ChatGPT, math-proving machine?

Tuesday, February 28, 2023 10:46 AM

Exercise 4.9 Describe explicit bijections

(AwB) = Cl=(A—C) x (B— C),
A= (BxO))2(A->B)x(A—C).

112

meéambda caleu cribe bijection [(A u B) \to C]= (A\to

To define a bijection between the functions of type *[(a u 8) » " and " (& +) = {8+

)" using lambda notation from lambda calculus, we need to define two lambda functions

that implement the bijection in bath directions.

First, let's define a function that converts a function o

pe "[(A u B) = €T to.a pair of
functions of ty|

pe~a + € and "B + €. We can represent this function using the lambda

notation as follows:

() Copycode

This function takes a function “g” of type "[(A u B) » cI' a5 input and retumns a pair of

functions, where the first function alements of type 4™ to values of type "¢, and the
second function maps elements of type *8” to values of type *c, The functions are obtained

by applying the original function “g” to pairs *(a, @) and (b, 1)" that represent elements

oftype " and "8 respectively

Now, let's define a function that converts a pair of functions oftype"a - © and "8 » € to
a function of &

e [(& u B) + €I". We can represent this function using the lambda
notation as follows:

python

h:(A=0C) = (8+0) = ((Aug)»+0)
h= P ((pLel(x[2]) iF w[1] == Pl

This function takes a pair of functions “p* of type " (a = €) = (8 » €)" asinput and returns

applying the corresponding function from the pair *p’

%, I thy

nd compenent o

Set theory Page 1

Vauz —=¢

= (.9)
CAYB
A

VA—~>8><C,
1 .9

[&~ (8= Q) ang (A~ 8) « (&~

- la=1) = (a=0)) asTo

0 Gomyeate

nalg(a)), ke. ma(g(a)))

nere “ny” and “n;" are the projection functions that ext

ts of 3 pair,

g oand hin A - (8 = Q)L iFoFee) = £

(2. ma(g(a)), Aa. ma(@(x))) = (A2, ma(h(a)), Ae. ma(h(2)))

ment-a ea

s (8(2))
na(g(2)) = Ml

€= A(Fs, fa). M. (Fa(a), Fa(2))

for any function “s" in

(F4y £2)' (A= B) = (A =€) such

no[a = (8=). Define "¢, and ¢, as

O copyrade

L (h(z))

O Copycode.

that “¢ and "¢ h inject d surject!

A = By = (& = &3]

Set theory Page 2

Can Al (or in particular, large language model) prove 'deeper' theorems?

20000

15000 TuigeaLs
[|

S

Numbers of Parameters (in Millions)

oo,
legatron
10000 atro
.
® RoBERTa
355
OpenAl w
5000 GPT-2 UNIVERSITY of WASHINGTON
1 Grover h 14
(&) Ai2 - 1500 e
Ai2 OpenAT Transformer MM >
ELMo GPT BERT Elio MTDNN__XLM XLMR °
9% 10 340 o 330 665 o 550
0e a . ° ° $ o o
30
q§% (&\‘h XINETQY (&(‘9
Carnegie,
N \;bd Viellorg \;od
K University 0

The Lean Theorem Prover
(system description)

Leonardo de Moura!, Soonho Kong?, Jeremy Avigad?,
Floris van Doorn? and Jakob von Raumer?”

! Microsoft Research
leonardo@microsoft.com
2 Carnegie Mellon University
soonhok@cs.cmu.edu, {avigad, fpv, javra}@andrev.cmu.edu

Abstract. Lean is a new open source theorem prover being developed
at Microsoft Research and Carnegie Mellon University, with a small
trusted kernel based on dependent type theory. It aims to bridge the
gap between interactive and automated theorem proving, by situating
automated tools and methods in a framework that supports user inter-
action and the construction of fully specified axiomatic proofs. Lean is an
ongoing and long-term effort, but it already provides many useful com-
ponents, integrated development environments, and a rich API which
can be used to embed it into other systems. It is currently being used to
formalize category theory, homotopy type theory, and abstract algebra.
‘We describe the project goals, system architecture, and main features,
and we discuss applications and continuing work.

Set theory Page 3

Computer-

ormalized proofs

Fundamental Theorem of Calculus (Harrison)

Fundamental Theorem of Algebra (Milewski)

Prime Number Theorem (Avigad++ @ CMU)

Godel’'s Incompleteness Theorem (Shankar)

Jordan Curve Theorem (Hales)

Brouwer Fixed Point Theorem (Harrison)

Four Color Theorem (Gonthier)

Feit-Thompson Theorem (Gonthier)

Kepler Conjecture (Hales)

The Lean Mathematical Library

The mathlib Community”

Abstract

This paper describes mathlib, a community-driven effort
to build a unified library of mathematics formalized in the
Lean proof assistant. Among proof assistant libraries, it is
distinguished by its dependently typed foundations, focus
on classical mathematics, extensive hierarchy of structures,
use of large- and small-scale automation, and distributed or-
ganization. We explain the architecture and design decisions
of the library and the social organization that has led to its
development.

CCS Concepts + Mathematics of computing — Mathe-
matical software; « Security and privacy — Logic and veri-
fication.

Keywords Lean, mathlib, formal library, formal proof

ACM Reference Format:
The mathlib Community. 2020. The Lean Library.

This paper describes mathlib, a formal library developed
for the Lean proof assistant [20]. As a community-driven
effort with dozens of contributors, there is no central organi-
zation to mathlib; it has arisen from the desires of its users
to develop a repository of formal mathematical proofs. We
are certainly not the first to profess this goal [1], nor is our
library particularly large in comparison to others. However,
its organizational structure, focus on classical mathematics,
and inclusion of automation distinguish it in the space of
proof assistant libraries. We aim here to explain our design
decisions and the ways in which mathlib has been put to
use.

In contrast to most modern proof assistant libraries, many
of the contributors to mathlib have an academic background
in pure matt This has the
contents and direction of the library. It is a goal of many
in the community to support the formalization of modern,

1

In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP 20), January 20-21, 2020,
New Orleans, LA, USA. ACM, New York, NY, USA, 15 pages. https
//doi.org/10.1145/3372885.3373824

1 Introduction

(s

Set theory Page 4

ics, and various projects discussed
in Section 7.2 suggest that we are approaching this point.

11 A History of mathlib and Lean 3

The Lean project was started by Leonardo de Moura in
2013 [20]. Its most recent version, Lean 3, was released in

1 yyationad

import data.nat
open nat

theorem sqrt_two_irrational {a b : N} (co : coprime a b) : a™2 # 2 x b2
assume H : a™2 = 2 * b72, —_—
have even (a”2),

from even;bf_exists (exists.intro _ H),
have even a,

from even_of_even_pow this,
obtain (¢ : N) (aeq : a =2 * c),

from exists_of_even this,
have * (2 %x¢c72) =2 % b2,

by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],
have 2 * ¢c”2 = b~2,

from eq_of _mul_eq _mul_left dec_trivial this,
have even (b72),

from even_of_exists (exists.intro
have even b,

from even_of_even_pow this,
have 2 | gcd a b,

from dvd_gcd (dvd_of_even “even a”) (dvd_of_even “even b7),
have 2 | (1 : N),

by rewrite [gcd_eq_one_of_coprime co at this]; exact this,
show false, from absurd "2 \ 1" dec_trivial

(eq.symm this)),

Btander Symposium Abstract for Set Theory Class

Lean Theorem Prover: The Lean, Mean, Math-Proving Machine

This is an exploratory project for MTH 342 - Set Theory. Lean Theorem Prover is a computer
programming language that allows for the formalization of mathematical proofs and the use of
computer-readable logic. We explore the structure and syntax of Lean and show how this can
be used to formalize mathematical proofs. We identify classic math proofs that have already
been formalized within Lean, as well as discuss how this language can advance the writing of
proofs. Finally, we investigate proofs that are still yet to be formalized, and the potential reasons
why they have yet to achieve formalization in Lean.

Set theory Page 5

[Submitted on 25 May 2022]

Autoformalization with Large Language Models
Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, Christian Szegedy

Autoformalization is the process of automatically translating from natural language mathematics to formal specifications and proofs. A successful autoformalization system
could advance the fields of formal verification, program synthesis, and artificial intelligence. While the long-term goal of autoformalization seemed elusive for a long time, we
show large language models provide new prospects towards this goal. We make the surprising observation that LLMs can correctly translate a significant portion (25.3%) of
mathematical competition problems perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness of this process by improving a previously introduced

neural theorem prover via training on these autoformalized theorems. Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark,
improving the proof rate from 29.6% to 35.2%.

Comments: 44 pages

Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.Al); Logic in Computer Science (cs.LO); Software Engineering (cs.SE)
Cite as: arXiv:2205.12615 [cs.LG]

(or arXiv:2205.12615v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2205.12615 0

Submission history

From: Yuhuai(Tony) Wu [view email]

Set theory Page 6

