$$
1 \neq 2 \text { or } k<2
$$

Oth-order logic. \leftarrow propositional togic
Ist-order logic predicate logic
Ind-order $\quad y>2$
nth -order logic. \qquad
exdudad mid
either true
Def: statement or proposition. p, q or false.
"The statement is false" is not a statement.
Truth value: $\quad T=1$

$$
F=0
$$

"ngan'ow. $7 p$ " not. p.

$$
\begin{aligned}
P & =(1+1=2) \\
7 P & =(1+2 \neq 2)
\end{aligned}
$$

P	$\neg P$
T	F
F	T

double negation \longrightarrow original statement

$$
P=\neg(T P) .
$$

compound statements, $\frac{\text { conjunctions. }}{\text { and. }} \frac{\text { disjunctions }}{\text { or. }}$

$$
\begin{aligned}
& \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \\
& (A \cap B)^{c}=A^{c} \cup B^{c} \text {. } \\
& \text { Conditional. statements } \\
& \text { If … (then.......... }
\end{aligned}
$$

p only if q,
condition of p.

quantifiers.
$\exists y \in R$. Sys there exist a. y, s.t. $y>z$ $\forall \cdot y \in(\mathbb{R}, P(y) \ll$ for all! y real, $y>2$.

甘. et Every integer is even, $\exists \quad \longleftarrow$ (there are even integers.

Fermat's Last Theorem:

$$
\begin{aligned}
& \forall n \in \mathbb{N},\left(\exists a, b, c \in \mathbb{N} ; \quad a^{n}+b^{n}=c^{n}\right) \\
& \text { Math Induction principle } \Rightarrow(n \leqslant 2)
\end{aligned}
$$

negation \& quantifier.
7 (Every integer is even)
We have at least is is not even. on. integer,
7 (there is a even..) $\underset{\substack{\text { numina. }}}{ }=$ We cannot

$$
\begin{aligned}
& \neg(\forall x, P(x)) \Leftarrow \quad \exists y \quad \neg \cdot P(y) \\
& \neg(\exists \omega, p(w)) \Leftrightarrow \quad \forall v, \neg P(r) .
\end{aligned}
$$

