Continuous line cegment. Les more discrete points than seguena	
[a,b] { Y. } ho	
Avgument: Assume they are [1-], corresponding to each other.	
Step 1: find the 1st pair of numbers in Smilton. st. the pair is in [a,b]	
Slep 2: name the image of pair in step I	
Repeat steps: find a pair in $\{V_i\}_{i=0}^{\infty}$ that is in $\{a_i,b_i\}$	
Step n: [an, bn-1] repeat,	
one set $[a_n,b_n] \subseteq [a_{n-1},b_{n-1}]$	
$\bigcap_{k=1}^{\infty} \left[a_{k}, b_{k} \right] \neq \emptyset \Rightarrow$	Can tov Thm
Is The or [a, b]	complete
7	hole?"

7. completeness axioms

(least upper bound property)

Every non-empty subset of IR, if it has an upper.
bound, then it has a unique least upper bound.

- lower.

greatest lower bound, $\sup \left(S = \left\{ x \in \mathbb{Q} \mid x^2 < 2 \right\} \right) = \sqrt{2}.$ 2) Dedekind 3 cut. Idea: complete Q We can. Cut IR at a point x. DXEQ. DX & Q, then it can be named using a sequence. of rational numbers. E.g. $\begin{cases} x \\ x > 2 \text{ and } so \end{cases}$ Stat ant defines invational number. 52, IR is Country complete. Def: (Canoly, sequence) { a; }i=1

(0)

H { > 0

= NeIN, st. + m, n. > / Carchy sequence in Q may Take all limit of Cauchy sephence have them animber, completion IR is Canchy complete. Mested interval Theorem $I_n = [a_n, b_n]$ st. $T_1 \supset T_2 \supset T_3 \supset T_4 \supset \cdots$ V | an-an. | E who where in R.

(all . the

 $J_{1} \supset J_{2} \supset T_{3} \supset \cdots J_{n}$ Moveover, $(b_n - a_n)$ Tin. Contains example. J2=1,4142358.... monotone convergence T

17 m.

 $as n \rightarrow \infty$

Aty one point.

> (14), 1,42) >,,,,,

hm.

Non-d Bolzana Weierstrass Every, bounded seg Totormodiale value t

ecreasing, bounded segunce it has a finite number as its vence has a converging subsegu Lovem.

limit

.enQ