
Lean Theorem Prover: The Lean, Mean, Math-Proving Machine
Sarah Herr, Joseph Kopp, Kailey Peppard, Ethan Shade

MTH 342, Dr. Jun Li

What is Lean?
Lean was created by Microsoft in 2013 as a 

functional programming language to write correct 

and maintainable code. Lean was not initially 

designed to check mathematical proofs, but 

mathematicians found this feature useful and 

expanded upon it. Lean’s design makes it easy to 

write proofs by having many functions and 

definitions already written into its programming. The 

software doesn’t say how to write proofs, but it can 

perform some of the simpler sub-steps of the proof 

and check your logic as you proceed.

Lean pulls from MathLib, a library of definitions, 

lemmas, and theorems that are formalized in code. 

As this library grows, more theorems will be 

formalized in Lean.

In 1999, mathematicians Paul and Jack Abad wrote 

a list “The Hundred Greatest Theorems”. The Lean 

community has been trying to formalize these 100 

proofs and has succeeded with 76 of them.

Successfully formalized theorems include:

- The square root of 2 is irrational

- The denumerability of rational numbers

Theorems yet to be formalized include:

- Godel’s Incompleteness Theorem

- Pi is transcendental

Syntax Denumerability of Rationals

Scan here to learn 

more and view sources

Future of Lean

The proof sets up a bijection from ℚ ≅ ℤ × ℕ, where 

𝑥. 1 ∈ ℤ , 𝑥. 2 ∈ ℕ1 and gcd 𝑥. 1, 𝑥. 2 = 1.

Thus, there are two goals:

Or show that given an element in ℚ, the 

denominator of that element is positive, and the 

numerator and denominator are coprime. And:

Or show that given a pair where the second element 

is positive and the elements are coprime, that pair is 

the same as a fraction in ℚ.

Then it remains to show that ℤ × ℕ (with restrictions) 

is countably infinite. Again, there are two goals:

Or show that ℤ × ℕ is infinite. And:

Or show that ℤ × ℕ is countable (called encodable 

by Lean). Then denumerable is defined as infinite 

and encodable so ℤ × ℕ is denumerable. 

And since ℚ ≅ ℤ × ℕ it must be that ℚ is also 

denumerable.

As more theorems are added into MathLib, Lean will 

have capabilities to help prove more theorems in 

math. With everything digitized in Lean, the proofs 

become available to a wider audience. Between 

reaching a wider audience and the way Lean 

automatically checks for correctness, it will become

easier to make advancements in math.

Lean uses type theory as a foundation instead of set 

theory. In essence, type theory is simply another way to 

talk about a "collection of things". But there is one key 

difference: rather than having both axioms and rules of 

inference, a type theory only has rules.

Take ⟨⟨a, b⟩, h1, h2⟩, for example, where a, b are 

integers and h1 is a proof b is positive and h2 is a proof 

that a and b are coprime, which can be seen in the 

example proof of the denumerability of the rationals.

Lean uses all the typical Boolean logic operators, 

the universal quantifiers of "for all" and "there exists",

and lambda notation 

for functions.

One thing to note 

however is that 

because using type 

theory necessitates

using "intuitionistic" 

logic, "not P" is 

instead thought of as 

"P implies absurdity".

As you use tactics in Lean, the software will continually 

update what your "goal" is; that is, what you need to 

prove to prove the original statement. The tactics you 

use must connect to this goal. Some tactics include:

- The "intro" or "intros" tactic introduces a new 

hypothesis, which is what the "h" in front of a 

proposition stands for.

- The "apply" tactic applies a premise to reach 

your goal.

- The "exact" tactic is used when your goal is 

exactly one of your premises.


	Slide 2

