Math 433 W 2019 - Week 12-13,
HW 5 and 6 merged, due on Apr 19, Friday

Lesson plan, reading assignments and homework:

Week 12-13: Sections 4-4, 4-5, 4-6, 4-7 in do Carmo’s book, geodesics and Gauss-Bonnet Theorem.
There are 10 questions totally counting 200 points, since they are the union of two standard home-
work sets.

You'll also find Hitchin’s notes Page 65-75 very useful. Especially Page 74 the geodesic equations.
These two weeks is the 1st step in Riemannian geometry. Almost everything we talk in class has

generalizations in any higher-dimensional Riemannian manifolds.

1.[20pts] For {0 < u < 27,a < v < b} C R?, the map
o(u,v) = (f(v) cosu, f(v)sinu, g(v)) C R’

is a surface of revolution. Assume the profile curve on the xz plane v(v) = (f(v),g(v)), a<wv <

b, f(v)>0,is arc-length parameterized, i.e. f2+ g2 = 1. We have
I = f(v)*du® + dv*.

a)show that the geodesic equation in this case is
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b)show that the meridian v = C' is a geodesic.
c)show that a parallel v = C is a geodesic iff f,(C) = 0.

d)In the torus o(u,v) = ((100 + cosv) cos u, (100 + cos v) sinu, sinv) C R3, there’s a circle z = 1 on

top. Is it a geodesic?

Remark: Besides doing the calculation of geodesic equations, we can try to use the tangent cone
idea to visualize whether or not a parallel is a geodesic.
Here’s an online demo of parallel transport on the sphere, and your browser needs to support Java:

http://torus.math.uiuc.edu/jms/java/dragsphere/

As we mentioned in the March 24th class, if we parallel transport a vector along a non-geodesic
closed loop in S?(indeed we can do in any surface), the vector does not get back to itself. However,

if we parallel transport a vector along a geodesic loop, the vector will come back to itself.



2. [20pts] Compute the geodesic curvature of the upper parallel (circle z = 1) of the torus o(u,v) =

((100 + cosv) cos u, (100 + cos v) sinu, sinv) C R3.

Before we do 3, here’s a simple definition we now introduce (see page 147 in do Carmo):
If a regular connected curve C' on S satisfies this property: for all p € C, the tangent line of C' is a

principal direction at p; then C' is said to be a line of curvature of S.

3. a) Show that if a geodesic whose curvature is nowhere 0 is also a line of curvature, then it is a
plane curve. (Hint: assume arc-length, use the local frame.)

b) Give an example of a line of curvature that is not a geodesic.

4. [10pts] Let ¢, be tangent vector fields along a curve 7 : (a,b) — S. Show that

% <(t), w(t) >=< Vou(t),w(t) > + < v(t), Vow(t) > .

[Hint: use the definition of the covariant derivative and the computation should be very easy.]

5. a. Show that if ¢ is an isothermal parametrization, that is, £ = G = A{u,v) and F = 0, then
the Gaussian curvature 1
K=——A(lnA),
oy A(nA),
where A¢ denotes the Laplacian ng + %"} of the function ¢.
b. Calculate the Gaussian curvature of the surface (upper half-plane model) with first funda-
mental form ) .
dv® + du?

e

6. [10pts] In geodesic normal coordinates I = du® + G(u,v)dv?. Show that
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[Hint:] Start with K = _2\/27;(%\/% + 8%\/%), if you get stuck, compute %5 and you’ll see the

pattern.

7. [10pts] Geodesics are solutions to the 1-dimensional variational problem. Minimal surfaces are
the 2-dimensional analog of geodesics because it’s the local area minimizer. A surface in R? is called

a minimal surface if it has zero mean curvature at every point.

a)Show that a minimal surface must have negative Gaussian curvature everywhere. (Consider

principal curvatures.)



b)Show that there’s no compact minimal surface embedded in R®. (Recall a fact that there must

be a point on the compact surface in R? with positive Gaussian curvature.)

Here’s some illustration of Minimal Surfaces. We actually see them a lot in daily life, for example,
the shape of a soap film.
http://torus.math.uiuc.edu/jms/Images/almgren/

8.(do Carmo 4-5, Q1:)[30pts]

Let S C R? be a regular, compact, connected, orientable surface which is
not homeomorphic to a sphere. Prove that there are points on S where the
Gaussian curvature is positive, negative, and zero.

[Hint:] Use global Gauss-Bonnet, and you’ll again find the following fact useful: there must be a

point on a compact surface in R?® with positive Gaussian curvature.

9. [30pts] Let S C R? be a surface with Gaussian curvature K < 0. Show that two geodesics v
and ¥, on S which start at a point p cannot meet again at a point ¢ in such a way that together
they bound a region S’ on S which is homeomorphic to a disk.

[Hint:] Local Gauss-Bonnet will help.

10. [30pts] Let S C R? be a surface homeomorphic to a cylinder and with Gaussian curvature
K < 0. Show that S has at most one simple closed geodesic.
[Hint:] Q9 will help.



The rest questions are to do for your own, not for turn in. Solutions will also be posted
on Friday, Apr 20th.

1.(Counterpart of do Carmo 4-5, Q1:)
If the surface S C R? is not assumed to be compact, are there still always points with K = 0, K >
0, K <07?

2.(do Carmo 4-5, Q2:)

Let T be a torus of revolution. Describe the image of the Gauss map of T
and show, without using the Gauss-Bonnet theorem, that

fj;xda=0.

Compute the Euler-Poincaré characteristic of T and check the above result
with the Gauss-Bonnet theorem.

3.(do Carmo 4-5, Q4:)

Compute the Euler-Poincaré characteristic of

a. An ellipsoid.
b. The surface S = {(x, v,2) € R x2 4+ vy 4 =1}.



4.(do Carmo 4-6, Q9:)

(A Local Isoperimetric Inequality for Geodesic Circles.) Let p € § and
let S,(p) be a geodesic circle of center p and radius r. Let L be the arc
length of §,(p) and A be the area of the region bounded by S, (p). Prove
that

4mA — L* = 7r*K(p) + R,

where K (p) is the Gaussian curvature of S at p and

Thus, if K(p) =0 (or < 0) and r is small, 47A —L? = 0 (or < 0).
(Compare the isoperimetric inequality of Sec. 1-7.)

5.(do Carmo 4-6, Q13:)(You need to know what is a group for this question, this is not required on
the exam. But doing this definitely helps understanding parallel transport and Gauss-Bonnet.)

(The Holonomy Group.) Let S be a regular surface and p € S. For each
piecewise regular parametrized curve «: [0, 1] — § with «(0) = «(/) =
p.let P,: T,(S) — T,(S) be the map which assigns toeach v € T,(S) its
parallel transport along « back to p. By Prop. 1 of Sec. 4-4, P, is a linear
isometry of T,(S). If B: [/, [] is another piecewise regular parametrized
curve with (/) = (/) = p, define the curve f o @: [0, /] — S by running
successively first @ and then f§; that is, S oa(s) = «(s) if s € [0, /], and
Boa(s) = B(s)ifs e [1,1].

a. Consider the set
H,(S) ={P,: T,(5) = T,(S5): all « joining p to p},

where « is piecewise regular. Define in this set the operation P; o P, =
Py that 1s, Pgo P, is the usual composition of performing first P,
and then Pg. Prove that, with this operation, H,(S) is a group (actually,
a subgroup of the group of linear isometries of 7,(5)). H,(S) is called
the holonomy group of § at p.

b. Show that the holonomy group at any point of a surface homeomorphic
to a disk with K = 0 reduces to the identity.

¢. Prove that if S is connected, the holonomy groups H,(S) and H,(S) at
two arbitrary points p, g € § are isomorphic. Thus, we can talk about
the (abstract) holonomy group of a surface.

d. Prove that the holonomy group of a sphere is isomorphic to the group
of 2 x 2 rotation matrices (cf. Exercise 22, Sec. 4-4).

6.(do Carmo 4-4, Q3:)



Verify that the surfaces
X(u, v) = (ucosv,usinv,logu), u =0
X(u, v) = (L cosv, usinuv, v),

have equal Gaussian curvature at the points x(u, v) and X(u, v) but that the
mapping X o X' is not an isometry. This shows that the “converse” of the
Gauss theorem is not true.



