Math 433 W 2019 - Week 12-13,

HW 5 and 6 merged, due on Apr 19, Friday

Lesson plan, reading assignments and homework:

Week 12-13: Sections 4-4, 4-5, 4-6, 4-7 in do Carmo's book, geodesics and Gauss-Bonnet Theorem. There are 10 questions totally counting 200 points, since they are the union of two standard homework sets.

You'll also find Hitchin's notes Page 65-75 very useful. Especially Page 74 the geodesic equations. These two weeks is the 1st step in Riemannian geometry. Almost everything we talk in class has generalizations in any higher-dimensional Riemannian manifolds.

1.[20pts] For $\{0 < u < 2\pi, a < v < b\} \subset \mathbb{R}^2$, the map

$$\sigma(u,v) = (f(v)\cos u, f(v)\sin u, g(v)) \subset \mathbb{R}^3$$

is a surface of revolution. Assume the profile curve on the xz plane $\gamma(v) = (f(v), g(v)), \quad a < v < b, \quad f(v) > 0$, is arc-length parameterized, i.e. $f_v^2 + g_v^2 = 1$. We have

$$I = f(v)^2 du^2 + dv^2.$$

a) show that the geodesic equation in this case is

$$\ddot{v} = f(v)\frac{df}{dv}(\dot{u})^2,$$

and

$$\frac{d}{dt}(f^2(v)\dot{u}) = 0.$$

b) show that the meridian $u \equiv C$ is a geodesic.

c) show that a parallel $v \equiv C$ is a geodesic iff $f_v(C) = 0$.

d)In the torus $\sigma(u, v) = ((100 + \cos v) \cos u, (100 + \cos v) \sin u, \sin v) \subset \mathbb{R}^3$, there's a circle z = 1 on top. Is it a geodesic?

Remark: Besides doing the calculation of geodesic equations, we can try to use the tangent cone idea to visualize whether or not a parallel is a geodesic.

Here's an online demo of parallel transport on the sphere, and your browser needs to support Java: http://torus.math.uiuc.edu/jms/java/dragsphere/

As we mentioned in the March 24th class, if we parallel transport a vector along a non-geodesic closed loop in S^2 (indeed we can do in any surface), the vector does not get back to itself. However, if we parallel transport a vector along a geodesic loop, the vector will come back to itself.

2. [20pts] Compute the geodesic curvature of the upper parallel (circle z = 1) of the torus $\sigma(u, v) = ((100 + \cos v) \cos u, (100 + \cos v) \sin u, \sin v) \subset \mathbb{R}^3$.

Before we do 3, here's a simple definition we now introduce (see page 147 in do Carmo): If a regular connected curve C on S satisfies this property: for all $p \in C$, the tangent line of C is a principal direction at p; then C is said to be a **line of curvature** of S.

3. a) Show that if a geodesic whose curvature is nowhere 0 is also a line of curvature, then it is a plane curve. (Hint: assume arc-length, use the local frame.)

b) Give an example of a line of curvature that is not a geodesic.

4. [10pts] Let \vec{v}, \vec{w} be tangent vector fields along a curve $\gamma : (a, b) \to S$. Show that

$$\frac{d}{dt} < v(\vec{t}), w(\vec{t}) > = < \nabla_{\gamma} v(t), w(\vec{t}) > + < v(\vec{t}), \nabla_{\gamma} w(t) >$$

[Hint: use the definition of the covariant derivative and the computation should be very easy.]

5. a. Show that if σ is an isothermal parametrization, that is, $E = G = \lambda(u, v)$ and F = 0, then the Gaussian curvature

$$K = -\frac{1}{2\lambda} \Delta(\ln \lambda),$$

where $\Delta \phi$ denotes the Laplacian $\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2}$ of the function ϕ .

b. Calculate the Gaussian curvature of the surface (upper half-plane model) with first fundamental form $dx^2 + dx^2$

$$\frac{dv^2 + du^2}{u^2}$$

6. [10pts] In geodesic normal coordinates $I = du^2 + G(u, v)dv^2$. Show that

$$K = -\frac{1}{\sqrt{G}} \frac{\partial^2 \sqrt{G}}{\partial u^2}.$$

[Hint:] Start with $K = -\frac{1}{2\sqrt{EG}} \left(\frac{\partial}{\partial u} \frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v} \frac{E_v}{\sqrt{EG}} \right)$, if you get stuck, compute $\frac{\partial\sqrt{G}}{\partial u}$ and you'll see the pattern.

7. [10pts] Geodesics are solutions to the 1-dimensional variational problem. Minimal surfaces are the 2-dimensional analog of geodesics because it's the local area minimizer. A surface in \mathbb{R}^3 is called a minimal surface if it has zero mean curvature at every point.

a)Show that a minimal surface must have negative Gaussian curvature everywhere. (Consider principal curvatures.)

b)Show that there's no compact minimal surface embedded in \mathbb{R}^3 . (Recall a fact that there must be a point on the compact surface in \mathbb{R}^3 with positive Gaussian curvature.)

Here's some illustration of Minimal Surfaces. We actually see them a lot in daily life, for example, the shape of a soap film.

http://torus.math.uiuc.edu/jms/Images/almgren/

8.(do Carmo 4-5, Q1:)[30pts]

Let $S \subset R^3$ be a regular, compact, connected, orientable surface which is not homeomorphic to a sphere. Prove that there are points on *S* where the Gaussian curvature is positive, negative, and zero.

[Hint:] Use global Gauss-Bonnet, and you'll again find the following fact useful: there must be a point on a compact surface in \mathbb{R}^3 with positive Gaussian curvature.

9. [30pts] Let $S \subset \mathbb{R}^3$ be a surface with Gaussian curvature $K \leq 0$. Show that two geodesics γ_1 and γ_2 on S which start at a point p cannot meet again at a point q in such a way that together they bound a region S' on S which is homeomorphic to a disk. [Hint:] Local Gauss-Bonnet will help.

10. [30pts] Let $S \subset \mathbb{R}^3$ be a surface homeomorphic to a cylinder and with Gaussian curvature K < 0. Show that S has at most one simple closed geodesic. [Hint:] Q9 will help. The rest questions are to do for your own, not for turn in. Solutions will also be posted on Friday, Apr 20th.

1.(Counterpart of do Carmo 4-5, Q1:)

If the surface $S \subset \mathbb{R}^3$ is not assumed to be compact, are there still always points with K = 0, K > 0, K < 0?

2.(do Carmo 4-5, Q2:)

Let T be a torus of revolution. Describe the image of the Gauss map of T and show, without using the Gauss-Bonnet theorem, that

$$\iint_T K \, d\sigma = 0.$$

Compute the Euler-Poincaré characteristic of T and check the above result with the Gauss-Bonnet theorem.

3.(do Carmo 4-5, Q4:)

Compute the Euler-Poincaré characteristic of

- a. An ellipsoid.
- **b.** The surface $S = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^{10} + z^6 = 1\}.$

(A Local Isoperimetric Inequality for Geodesic Circles.) Let $p \in S$ and let $S_r(p)$ be a geodesic circle of center p and radius r. Let L be the arc length of $S_r(p)$ and A be the area of the region bounded by $S_r(p)$. Prove that

$$4\pi A - L^2 = \pi^2 r^4 K(p) + R,$$

where K(p) is the Gaussian curvature of S at p and

$$\lim_{r\to 0}\frac{R}{r^4}=0.$$

Thus, if K(p) > 0 (or < 0) and *r* is small, $4\pi A - L^2 > 0$ (or < 0). (Compare the isoperimetric inequality of Sec. 1-7.)

5.(do Carmo 4-6, Q13:)(You need to know what is a group for this question, this is not required on the exam. But doing this definitely helps understanding parallel transport and Gauss-Bonnet.)

(*The Holonomy Group.*) Let *S* be a regular surface and $p \in S$. For each piecewise regular parametrized curve α : $[0, l] \to S$ with $\alpha(0) = \alpha(l) = p$, let $P_{\alpha}: T_p(S) \to T_p(S)$ be the map which assigns to each $v \in T_p(S)$ its parallel transport along α back to *p*. By Prop. 1 of Sec. 4-4, P_{α} is a linear isometry of $T_p(S)$. If β : $[l, \overline{l}]$ is another piecewise regular parametrized curve with $\beta(l) = \beta(\overline{l}) = p$, define the curve $\beta \circ \alpha$: $[0, \overline{l}] \to S$ by running successively first α and then β ; that is, $\beta \circ \alpha(s) = \alpha(s)$ if $s \in [0, l]$, and $\beta \circ \alpha(s) = \beta(s)$ if $s \in [l, \overline{l}]$.

a. Consider the set

 $H_p(S) = \{P_{\alpha}: T_p(S) \to T_p(S); \text{ all } \alpha \text{ joining } p \text{ to } p\},\$

where α is piecewise regular. Define in this set the operation $P_{\beta} \circ P_{\alpha} = P_{\beta \circ \alpha}$; that is, $P_{\beta} \circ P_{\alpha}$ is the usual composition of performing first P_{α} and then P_{β} . Prove that, with this operation, $H_p(S)$ is a group (actually, a subgroup of the group of linear isometries of $T_p(S)$). $H_p(S)$ is called the *holonomy group* of *S* at *p*.

- **b.** Show that the holonomy group at any point of a surface homeomorphic to a disk with $K \equiv 0$ reduces to the identity.
- **c.** Prove that if *S* is connected, the holonomy groups $H_p(S)$ and $H_q(S)$ at two arbitrary points $p, q \in S$ are isomorphic. Thus, we can talk about *the* (abstract) *holonomy group of a surface*.
- **d.** Prove that the holonomy group of a sphere is isomorphic to the group of 2×2 rotation matrices (cf. Exercise 22, Sec. 4-4).

6.(do Carmo 4-4, Q3:)

Verify that the surfaces

$$\mathbf{x}(u, v) = (u \cos v, u \sin v, \log u), \quad u > 0$$

$$\bar{\mathbf{x}}(u, v) = (u \cos v, u \sin v, v),$$

have equal Gaussian curvature at the points $\mathbf{x}(u, v)$ and $\mathbf{\bar{x}}(u, v)$ but that the mapping $\mathbf{\bar{x}} \circ \mathbf{x}^{-1}$ is not an isometry. This shows that the "converse" of the Gauss theorem is not true.