Lesson plan, reading assignments and homework:

Week 12-13: Sections 4-4, 4-5, 4-6, 4-7 in do Carmo's book, geodesics and Gauss-Bonnet Theorem. There are 10 questions totally counting 200 points, since they are the union of two standard homework sets.
You'll also find Hitchin's notes Page 65-75 very useful. Especially Page 74 the geodesic equations. These two weeks is the 1st step in Riemannian geometry. Almost everything we talk in class has generalizations in any higher-dimensional Riemannian manifolds.

1. [20pts] For $\{0<u<2 \pi, a<v<b\} \subset \mathbb{R}^{2}$, the map

$$
\sigma(u, v)=(f(v) \cos u, f(v) \sin u, g(v)) \subset \mathbb{R}^{3}
$$

is a surface of revolution. Assume the profile curve on the xz plane $\gamma(v)=(f(v), g(v)), \quad a<v<$ $b, \quad f(v)>0$, is arc-length parameterized, i.e. $f_{v}^{2}+g_{v}^{2}=1$. We have

$$
I=f(v)^{2} d u^{2}+d v^{2} .
$$

a)show that the geodesic equation in this case is

$$
\ddot{v}=f(v) \frac{d f}{d v}(\dot{u})^{2}
$$

and

$$
\frac{d}{d t}\left(f^{2}(v) \dot{u}\right)=0
$$

b)show that the meridian $u \equiv C$ is a geodesic.
c)show that a parallel $v \equiv C$ is a geodesic iff $f_{v}(C)=0$.
d)In the torus $\sigma(u, v)=((100+\cos v) \cos u,(100+\cos v) \sin u, \sin v) \subset \mathbb{R}^{3}$, there's a circle $z=1$ on top. Is it a geodesic?

Remark: Besides doing the calculation of geodesic equations, we can try to use the tangent cone idea to visualize whether or not a parallel is a geodesic.
Here's an online demo of parallel transport on the sphere, and your browser needs to support Java: http://torus.math.uiuc.edu/jms/java/dragsphere/

As we mentioned in the March 24th class, if we parallel transport a vector along a non-geodesic closed loop in S^{2} (indeed we can do in any surface), the vector does not get back to itself. However, if we parallel transport a vector along a geodesic loop, the vector will come back to itself.
2. [20pts] Compute the geodesic curvature of the upper parallel (circle $z=1$) of the torus $\sigma(u, v)=$ $((100+\cos v) \cos u,(100+\cos v) \sin u, \sin v) \subset \mathbb{R}^{3}$.

Before we do 3, here's a simple definition we now introduce (see page 147 in do Carmo):
If a regular connected curve C on S satisfies this property: for all $p \in C$, the tangent line of C is a principal direction at p; then C is said to be a line of curvature of S.
3. a) Show that if a geodesic whose curvature is nowhere 0 is also a line of curvature, then it is a plane curve. (Hint: assume arc-length, use the local frame.)
b) Give an example of a line of curvature that is not a geodesic.
4. [10pts] Let \vec{v}, \vec{w} be tangent vector fields along a curve $\gamma:(a, b) \rightarrow S$. Show that

$$
\frac{d}{d t}<v \overrightarrow{(t)}, w \overrightarrow{(t)}>=<\nabla_{\gamma} v(t), w \overrightarrow{(t)}>+<v \overrightarrow{(t)}, \nabla_{\gamma} w(t)>
$$

[Hint: use the definition of the covariant derivative and the computation should be very easy.]
5. a. Show that if σ is an isothermal parametrization, that is, $E=G=\lambda(u, v)$ and $F=0$, then the Gaussian curvature

$$
K=-\frac{1}{2 \lambda} \Delta(\ln \lambda)
$$

where $\Delta \phi$ denotes the Laplacian $\frac{\partial^{2} \phi}{\partial u^{2}}+\frac{\partial^{2} \phi}{\partial v^{2}}$ of the function ϕ.
b. Calculate the Gaussian curvature of the surface (upper half-plane model) with first fundamental form

$$
\frac{d v^{2}+d u^{2}}{u^{2}}
$$

6. $[10 \mathrm{pts}]$ In geodesic normal coordinates $I=d u^{2}+G(u, v) d v^{2}$. Show that

$$
K=-\frac{1}{\sqrt{G}} \frac{\partial^{2} \sqrt{G}}{\partial u^{2}}
$$

[Hint:] Start with $K=-\frac{1}{2 \sqrt{E G}}\left(\frac{\partial}{\partial u} \frac{G_{u}}{\sqrt{E G}}+\frac{\partial}{\partial v} \frac{E_{v}}{\sqrt{E G}}\right)$, if you get stuck, compute $\frac{\partial \sqrt{G}}{\partial u}$ and you'll see the pattern.
7. [10pts] Geodesics are solutions to the 1-dimensional variational problem. Minimal surfaces are the 2-dimensional analog of geodesics because it's the local area minimizer. A surface in \mathbb{R}^{3} is called a minimal surface if it has zero mean curvature at every point.
a)Show that a minimal surface must have negative Gaussian curvature everywhere. (Consider principal curvatures.)
b)Show that there's no compact minimal surface embedded in \mathbb{R}^{3}. (Recall a fact that there must be a point on the compact surface in \mathbb{R}^{3} with positive Gaussian curvature.)

Here's some illustration of Minimal Surfaces. We actually see them a lot in daily life, for example, the shape of a soap film.
http://torus.math.uiuc.edu/jms/Images/almgren/
8. (do Carmo 4-5, Q1:) [30pts]

Let $S \subset R^{3}$ be a regular, compact, connected, orientable surface which is not homeomorphic to a sphere. Prove that there are points on S where the Gaussian curvature is positive, negative, and zero.

[Hint:] Use global Gauss-Bonnet, and you'll again find the following fact useful: there must be a point on a compact surface in \mathbb{R}^{3} with positive Gaussian curvature.
9. [30pts] Let $S \subset \mathbb{R}^{3}$ be a surface with Gaussian curvature $K \leq 0$. Show that two geodesics γ_{1} and γ_{2} on S which start at a point p cannot meet again at a point q in such a way that together they bound a region S^{\prime} on S which is homeomorphic to a disk.
[Hint:] Local Gauss-Bonnet will help.
10. [30pts] Let $S \subset \mathbb{R}^{3}$ be a surface homeomorphic to a cylinder and with Gaussian curvature $K<0$. Show that S has at most one simple closed geodesic.
[Hint:] Q9 will help.

The rest questions are to do for your own, not for turn in. Solutions will also be posted on Friday, Apr 20th.

1. (Counterpart of do Carmo 4-5, Q1:)

If the surface $S \subset \mathbb{R}^{3}$ is not assumed to be compact, are there still always points with $K=0, K>$ $0, K<0$?
2.(do Carmo 4-5, Q2:)

Let T be a torus of revolution. Describe the image of the Gauss map of T and show, without using the Gauss-Bonnet theorem, that

$$
\iint_{T} K d \sigma=0
$$

Compute the Euler-Poincaré characteristic of T and check the above result with the Gauss-Bonnet theorem.
3.(do Carmo 4-5, Q4:)

Compute the Euler-Poincaré characteristic of
a. An ellipsoid.
b. The surface $S=\left\{(x, y, z) \in R^{3} ; x^{2}+y^{10}+z^{6}=1\right\}$.
(A Local Isoperimetric Inequality for Geodesic Circles.) Let $p \in S$ and let $S_{r}(p)$ be a geodesic circle of center p and radius r. Let L be the arc length of $S_{r}(p)$ and A be the area of the region bounded by $S_{r}(p)$. Prove that

$$
4 \pi A-L^{2}=\pi^{2} r^{4} K(p)+R,
$$

where $K(p)$ is the Gaussian curvature of S at p and

$$
\lim _{r \rightarrow 0} \frac{R}{r^{4}}=0
$$

Thus, if $K(p)>0($ or $<0)$ and r is small, $4 \pi A-L^{2}>0($ or $<0)$. (Compare the isoperimetric inequality of Sec. 1-7.)
5.(do Carmo 4-6, Q13:)(You need to know what is a group for this question, this is not required on the exam. But doing this definitely helps understanding parallel transport and Gauss-Bonnet.)
(The Holonomy Group.) Let S be a regular surface and $p \in S$. For each piecewise regular parametrized curve $\alpha:[0, l] \rightarrow S$ with $\alpha(0)=\alpha(l)=$ p, let $P_{\alpha}: T_{p}(S) \rightarrow T_{p}(S)$ be the map which assigns to each $v \in T_{p}(S)$ its parallel transport along α back to p. By Prop. 1 of Sec. $4-4, P_{\alpha}$ is a linear isometry of $T_{p}(S)$. If $\beta:[l, \bar{l}]$ is another piecewise regular parametrized curve with $\beta(l)=\beta(\bar{l})=p$, define the curve $\beta \circ \alpha:[0, \bar{l}] \rightarrow S$ by running successively first α and then β; that is, $\beta \circ \alpha(s)=\alpha(s)$ if $s \in[0, l]$, and $\beta \circ \alpha(s)=\beta(s)$ if $s \in[l, \bar{l}]$.
a. Consider the set

$$
H_{p}(S)=\left\{P_{\alpha}: T_{p}(S) \rightarrow T_{p}(S) ; \text { all } \alpha \text { joining } p \text { to } p\right\}
$$

where α is piecewise regular. Define in this set the operation $P_{\beta} \circ P_{\alpha}=$ $P_{\beta \circ \alpha}$; that is, $P_{\beta} \circ P_{\alpha}$ is the usual composition of performing first P_{α} and then P_{β}. Prove that, with this operation, $H_{p}(S)$ is a group (actually, a subgroup of the group of linear isometries of $\left.T_{p}(S)\right) . H_{p}(S)$ is called the holonomy group of S at p.
b. Show that the holonomy group at any point of a surface homeomorphic to a disk with $K \equiv 0$ reduces to the identity.
c. Prove that if S is connected, the holonomy groups $H_{p}(S)$ and $H_{q}(S)$ at two arbitrary points $p, q \in S$ are isomorphic. Thus, we can talk about the (abstract) holonomy group of a surface.
d. Prove that the holonomy group of a sphere is isomorphic to the group of 2×2 rotation matrices (cf. Exercise 22, Sec. 4-4).
6.(do Carmo 4-4, Q3:)

Verify that the surfaces

$$
\begin{aligned}
& \mathbf{x}(u, v)=(u \cos v, u \sin v, \log u), \quad u>0 \\
& \overline{\mathbf{x}}(u, v)=(u \cos v, u \sin v, v),
\end{aligned}
$$

have equal Gaussian curvature at the points $\mathbf{x}(u, v)$ and $\overline{\mathbf{x}}(u, v)$ but that the mapping $\overline{\mathbf{x}} \circ \mathbf{x}^{-1}$ is not an isometry. This shows that the "converse" of the Gauss theorem is not true.

