
Math 433 W 2019 - Week 12-13,

HW5 and 6 merged, due on Apr 17, Wednesday

Lesson plan, reading assignments and homework:

Week 12-13: Sections 4-4, 4-5, 4-6, 4-7 in do Carmo’s book, geodesics and Gauss-Bonnet Theorem.

There are 10 questions totally counting 200 points, since they are the union of two standard home-

work sets.

You’ll also find Hitchin’s notes Page 65-75 very useful. Especially Page 74 the geodesic equations.

These two weeks is the 1st step in Riemannian geometry. Almost everything we talk in class has

generalizations in any higher-dimensional Riemannian manifolds.

1.[20pts] For {0 < u < 2π, a < v < b} ⊂ R2, the map

σ(u, v) = (f(v) cosu, f(v) sinu, g(v)) ⊂ R3

is a surface of revolution. Assume the profile curve on the xz plane C = (f(v), g(v)), a < v <

b, f(v) > 0, is arc-length parametrized, i.e. f 2
v + g2v = 1. We have

I = f(v)2du2 + dv2.

a)show that the geodesic equation in this case is

v̈ = f(v)
df

dv
(u̇)2,

and

d

dt
(f 2(v)u̇) = 0.

b)show that the meridian u ≡ C is a geodesic.

c)show that a parallel v ≡ C is a geodesic iff fv(C) = 0.

d)In the torus σ(u, v) = ((100 + cos v) cosu, (100 + cos v) sinu, sin v) ⊂ R3, there’s a circle z = 1 on

top. Is it a geodesic?

Solution:

a) By the geodesic equation (in Hitchin’s notes):



We have E = f(v)2, F = 0, G = 1, and plugging in the above equations we immediately see they

becomes

v̈ = f(v)
df

dv
(u̇)2,

and
d

dt
(f 2(v)u̇) = 0.

b) For the meridian u ≡ C, d
dt

(f 2(v)u̇) always hold. And we have the curve being arc-length, which

means

f(v)2u̇2 + v̇2 = 1.

It is easy to see that this means v̇ = ±1. Then we check v̈ = f(v) df
dv

(u̇)2 also holds.

c)A parallel v = C is a geodesic if and only if fv = 0 when v = C. If v = C, f(v)2u̇2 + v̇2 = 1 implies

v̇ 6= 0 is a constant, so d
dt

(f 2(v)u̇) holds. We still need to check v̈ = f(v) df
dv

(u̇)2. And it holds if and

only if fv(C) = 0. Hence the conclusion.

d)No. kg 6= 0, See question 2.

Remark: Besides doing the calculation of geodesic equations, we can try to use the tangent cone

idea to visualize whether or not a parallel is a geodesic.

Here’s an online demo of parallel transport on the sphere, and your browser needs to support Java:

http://torus.math.uiuc.edu/jms/java/dragsphere/

As we mentioned in the March 24th class, if we parallel transport a vector along a non-geodesic

closed loop in S2(indeed we can do in any surface), the vector does not get back to itself. However,

if we parallel transport a vector along a geodesic loop, the vector will come back to itself.

2. [20pts] Compute the geodesic curvature of the upper parallel (circle z = 1) of the torus σ(u, v) =

((100 + cos v) cosu, (100 + cos v) sinu, sin v) ⊂ R3.

Solution:

kg = 1/100. Since the normal vector of the surface is perpendicular to the normal of the curve, by

Euler’s theorem kg = k = 1/100.

Before we do 3, here’s a simple definition we now introduce (see page 147 in do Carmo):

If a regular connected curve C on S satisfies this property: for all p ∈ C, the tangent line of C is a

principal direction at p; then C is said to be a line of curvature of S.

3. a)Show that if a geodesic (k 6= 0 everywhere) is also a line of curvature, then it is a plane curve.

(Hint: assume arc-length, use the local frame.)

b) Give an example of a line of curvature that is not a geodesic.

a)Suppose the curve is arc-length parameterized by γ(t).

Now ~t, ~n,~b denote the Frenet frame, and let ~N denote the normal vector of the surface. Firstly we

know that being a geodesic implies that k = kn and ~n = ± ~N . Then a line of curvature means that

d ~N/dt = −kn~t, since the tangent lines is a principal direction. Now we know the torsion τ is always



0, because by definition it is d~n/dt ·~b = ±d ~N/dt ·~b = ∓kn~t ·~b = 0. Since k 6= 0 everywhere and

τ ≡ 0, we know it is a plane curve.

b) No. Because any curve on a plane is a line of curvature. And only straight lines are geodesics

on the plane.

4. [10pts] Let ~v, ~w be tangent vector fields along a curve γ : (a, b)→ S. Show that

d

dt
< ~v(t), ~w(t) >=< ∇γv(t), ~w(t) > + < ~v(t),∇γw(t) > .

[Hint: use the definition of the covariant derivative and the computation should be very easy.]

Solution:

d

dt
< ~v(t), ~w(t) >=<

d

dt
~v(t), ~w(t) > + < ~v(t),

d

dt
~w(t) >

=< ∇γv(t)+(
d

dt
~v(t)·~n)~n, ~w(t) > + < ~v(t),∇γw(t) + (

d

dt
~w(t) · ~n)~n >=< ∇γv(t), ~w(t) > + < ~v(t),∇γw(t) > .

5. [20pts] Show that geodesic circles on constant Gaussian curvature surfaces have constant geo-

desic curvature.

Solution: A simple solution is the following:

There exist a coordinate (geodesic polar (r, θ), for example), such that E = 1, F = 0, G = C and

Gr = c in geodesic circles. On do Carmo p.256, by Proposition 4 (Theorem of Liouville), curvature

of curve r ≡ A, kg = Gr

2G
√
E
. Hence kg is constant.

6. [10pts] In geodesic normal coordinates I = du2 +G(u, v)dv2. Show that

K = − 1√
G

∂2
√
G

∂u2
.

[Hint:] Start with K = − 1
2
√
EG

( ∂
∂u

Gu√
EG

+ ∂
∂v

Ev√
EG

), if you get stuck, compute ∂
√
G

∂u
and you’ll see the

pattern.

Solution:

K = − 1
2
√
EG

( ∂
∂u

Gu√
EG

+ ∂
∂v

Ev√
EG

).

Now let E = 1, F = 0, K = 1
2
√
G

∂
∂u

Gu√
G
.

We have ∂
√
G

∂u
= Gu

1
2

1√
G
. Now product rule give the answer: K = − 1√

G
∂2
√
G

∂u2
.

7. [10pts] Geodesics are solutions to the 1-dimensional variational problem. Minimal surfaces are

the 2-dimensional analog of geodesics because it’s the local area minimizer. A surface in R3 is called

a minimal surface if it has zero mean curvature at every point.

a)Show that a minimal surface must have non-positive Gaussian curvature everywhere. (Consider

principal curvatures.)



b)Show that there’s no compact minimal surface embedded in R3. (Recall a fact that there must

be a point on the compact surface in R3 with positive Gaussian curvature.)

Solution: a) as we mentioned in class, k1, k2 are two principal curvatures. 2H = k1 + k2 = 0, this

means k1k2 ≤ 1
4
(k1 + k2) = 0.

b)Suppose there’s a compact minimal surface embedded in R3, then there must be a point on the

compact surface in R3 with positive Gaussian curvature. Contradict against part a).

Here’s some illustration of Minimal Surfaces. We actually see them a lot in daily life, for example,

the shape of a soap film.

http://torus.math.uiuc.edu/jms/Images/almgren/



8.(do Carmo 4-5, Q1:)[30pts]

[Hint:] Use global Gauss-Bonnet, and you’ll again find the following fact useful: there must be a

point on a compact surface in R3 with positive Gaussian curvature.

Solution:

The surface is not a sphere, its Euler number ≤ 0. Since the surface is compact in R3, there is at

least one point with positive Gaussian curvature.

Gaussian curvature is a smooth function on the surface, and hence it’s positive in at least a small

open set around that point. It has to be somewhere negative because otherwise its integral would

be positive, in contradiction to Gauss-Bonnet.

Now take a path connecting a positive point with a negative point. The Gaussian curvature is a

continuous function on this path(think as a closed interval). By the intermediate value theorem,

there must exist a point in this path with zero Gaussian curvature.

The following question are indeed in the textbook Page 280

9. [30pts] Let S ⊂ R3 be a surface with Gaussian curvature K ≤ 0. Show that two geodesics γ1

and γ2 on S which start at a point p cannot meet again at a point q in such a way that together

they bound a region S ′ on S which is homeomorphic to a disk.

[Hint:] Local Gauss-Bonnet will help.

Solution:

If there are two geodesics γ1 and γ2 pass through p, q, then they form a 2-gon since S ′ is is home-

omorphic to a disk. Let θ1, θ2 be the two angles at p and q. Apply local Gauss-Bonnet to this

2-gon, ∫∫
S′
KdA+ π − θ1 + π − θ2 = 2π,

which means θ1 + θ2 =
∫∫

S′ KdA ≤ 0.

Hence θ1 + θ2 = 0, contradicting to the assumption that there are two geodesics (think about the

exponential map).

10. [30pts] Let S ⊂ R3 be a surface homeomorphic to a cylinder and with Gaussian curvature

K < 0. Show that S has at most one simple closed geodesic.

[Hint:] Q9 will help.

Solution:

Suppose there are two simple closed geodesics on S, γ1 and γ2. Of course, there are 3 possibilities,

either γ1 and γ2 dont intersect, they intersect in one point, or they intersect in more than one point.

If they intersect in more than one point, then, looking at two adjacent intersection points (as viewed

traveling along, say, γ1), the region bounded by γ1 and γ2 is homeomorphic to a disc, since γ1 and



γ2 are simple closed curves. However, by Q9, this is impossible, since K < 0 on S, so we see that

γ1 and γ2 can intersect in at most 1 point. On the other hand, suppose γ1 and γ2 dont intersect

at all. Let S ′ be the region bounded by γ1 and γ2 . Then, since γ1 and γ2 are simple closed curves

and S is homeomorphic to a cylinder, S ′ is also homeomorphic to a cylinder. We have

2πχ(S ′) = 0 =

∫∫
S′
KdA < 0,

contradiction.

Thus, we conclude that γ1 and γ2 must intersect in exactly one point. However, for this to be the

case, γ1 and γ2 must be tangent at their point of intersection, which, by the uniqueness of geodesics,

implies that γ1 and γ2 describe the same curve. Therefore, we conclude that S has at most one

simple closed geodesic.

Note 1: The example for this question is the pseudosphere, which is homeomorphic to the cylinder

and having negative curvature everywhere.

The rest questions are suggested HW problems, solutions provided.

1.(Counterpart of do Carmo 4-5, Q1:)

If the surface S ⊂ R3 is not assumed to be compact, are there still always points with K = 0, K >

0, K < 0?

Solution: Clearly not true. Think about the plane, cylinder, pseudosphere etc. When compact

condition is removed, many good properties fail to be true. See the above Note 2 to Q 10.



2.(do Carmo 4-5, Q2:)

Solution: The Gauss map part of this question we refer to the Q6 in the sample final. Basically,

the Gauss map on the torus will cover the unit sphere twice: once by the non-positive part and

once by the non-negative part of Gaussian curvature.

The Gauss-Bonnet theorem part of the question we refer to Exam 2 the last question.

3.(do Carmo 4-5, Q4:)

Solution: Denote the ellipsoid by
x2

a2
+
y2

b2
+
z2

c2
= 1,

do the change of variable p = x
a
, q = y

b
, r = z

c
. This is a homeomorphism to the sphere and hence

Euler number of ellipsoid is 2.

For the second surface, do the change of variable p = x, q = y5, r = z3. This is a homeomorphism

to the sphere and hence Euler number of surface S is 2.



4.(do Carmo 4-6, Q9:)

Note: You can actually find a solution in stackexchange of this question using geodesic polar

coordinates. However that solution has serious gaps (as in the solution on stackexchange to some

other questions, Q8 for example). We’ll not have geodesic polar coordinates in the final. If you are

interested in this question, we can talk in office hours.



5.(do Carmo 4-6, Q13:)

Note:This is definitely not examinable, and hence in the solution below we’ll use standard Rie-

mannian Geometry notion, see the notes for Further reading.



6.(do Carmo 4-4, Q3:)

Solution: We will denote σ and σ̄for the two parametriztions. σu = (cos v; sin v;u−1); σv =

(−u sin v;u cos v; 0) and

E = 1 + u−2;F = 0, G = u2

Because F = 0 we have the formula

K = − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

) =
−1

(1 + u2)2
.

Also, we have σ̄u = (cos v; sin v; 0); σ̄v = (−u sin v;u cos v; 0) and and

Ē = 1; F̄ = 0, Ḡ = 1 + u2.

Using the same formula we have

K̄ = − 1

2
√
ĒḠ

(
∂

∂u

Ḡu√
ĒḠ

+
∂

∂v

Ēv√
ĒḠ

) =
−1

(1 + u2)2
.

Therefore the surfaces have the same curvature. If the map σ ◦ σ̄−1 were an isometry then by

Proposition 1, page 220 in do Carmo, we would have

E = Ē, F = F̄ , G = Ḡ

. Because this is false the surfaces are not isometric.


