Lesson plan, reading assignments and homework:

Week 1: Overview, vector valued functions and their differentiations.

Week 2: Sections 1-2,1-3,1-4 in do Carmo's book.

This HW contains 9 problems, mostly from do Carmo's book(some question numbers are not listed because they are numbered differently in different editions). Unless explicitly marked, one question counts 10 points.

 $100 \text{ total} = 20 + 8 \times 10 \text{ points.}$

1.

Let $\alpha: I \to R^3$ be a parametrized curve and let $v \in R^3$ be a fixed vector. Assume that $\alpha'(t)$ is orthogonal to v for all $t \in I$ and that $\alpha(0)$ is also orthogonal to v. Prove that $\alpha(t)$ is orthogonal to v for all $t \in I$.

2.

Let $\alpha: I \to R^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

3.

Show that the tangent lines to the regular parametrized curve $\alpha(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x.

A map $\alpha: I \to R^3$ is called a curve of class C^k if each of the coordinate functions in the expression $\alpha(t) = (x(t), y(t), z(t))$ has continuous derivatives up to order k. If α is merely continuous, we say that α is of class C^0 . A curve α is called *simple* if the map α is one-to-one. Thus, the curve in Example 3 of Sec. 1-2 is not simple.

Let $\alpha: I \to R^3$ be a simple curve of class C^0 . We say that α has a weak tangent at $t = t_0 \in I$ if the line determined by $\alpha(t_0 + h)$ and $\alpha(t_0)$ has a limit position when $h \to 0$. We say that α has a strong tangent at $t = t_0$ if the line determined by $\alpha(t_0 + h)$ and $\alpha(t_0 + k)$ has a limit position when $h, k \to 0$. Show that

- **a.** $\alpha(t) = (t^3, t^2), t \in R$, has a weak tangent but not a strong tangent at t = 0.
- **b.** If $\alpha: I \to R^3$ is of class C^1 and regular at $t = t_0$, then it has a strong tangent at $t = t_0$.
- c. The curve given by

$$\alpha(t) = \begin{cases} (t^2, t^2), & t \ge 0, \\ (t^2, -t^2), & t \le 0, \end{cases}$$

is of class C^1 but not of class C^2 . Draw a sketch of the curve and its tangent vectors.

Let $\alpha: I \to R^3$ be a differentiable curve and let $[a, b] \subset I$ be a closed interval. For every *partition*

$$a = t_0 < t_1 < \cdots < t_n = b$$

of [a, b], consider the sum $\sum_{i=1}^{n} |\alpha(t_i) - \alpha(t_{i-1})| = l(\alpha, P)$, where P stands for the given partition. The norm |P| of a partition P is defined as

$$|P| = \max(t_i - t_{i-1}), i = 1, \ldots, n.$$

Geometrically, $l(\alpha, P)$ is the length of a polygon inscribed in $\alpha([a, b])$ with vertices in $\alpha(t_i)$ (see Fig. 1-12). The point of the exercise is to show that the arc length of $\alpha([a, b])$ is, in some sense, a limit of lengths of inscribed polygons.

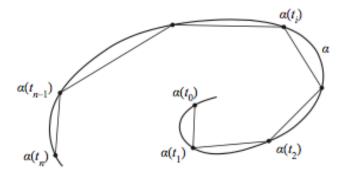


Figure 1-12

Prove that given $\epsilon > 0$ there exists $\delta > 0$ such that if $|P| < \delta$ then

$$\left|\int_a^b |\alpha'(t)|\,dt - l(\alpha,\,P)\right| < \epsilon.$$

Let $\alpha: I \to R^3$ be a curve of class C^0 (cf. Exercise 7). Use the approximation by polygons described in Exercise 8 to give a reasonable definition of arc length of α .

7, 20 points.

(Straight Lines as Shortest.) Let $\alpha: I \to R^3$ be a parametrized curve. Let $[a, b] \subset I$ and set $\alpha(a) = p$, $\alpha(b) = q$.

a. Show that, for any constant vector v, |v| = 1,

$$(q-p)\cdot v = \int_a^b \alpha'(t)\cdot v\,dt \le \int_a^b |\alpha'(t)|\,dt.$$

b. Set

$$v = \frac{q - p}{|q - p|}$$

and show that

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt;$$

that is, the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line joining these points.

Show that an equation of a plane passing through three noncolinear points $p_1 = (x_1, y_1, z_1), p_2 = (x_2, y_2, z_2), p_3 = (x_3, y_3, z_3)$ is given by

$$(p-p_1) \wedge (p-p_2) \cdot (p-p_3) = 0,$$

where p = (x, y, z) is an arbitrary point of the plane and $p - p_1$, for instance, means the vector $(x - x_1, y - y_1, z - z_1)$.

9.

Prove that the distance ρ between the nonparallel lines

$$x-x_0 = u_1t$$
, $y-y_0 = u_2t$, $z-z_0 = u_3t$,
 $x-x_1 = v_1t$, $y-y_1 = v_2t$, $z-z_1 = v_3t$

is given by

$$\rho = \frac{|(u \wedge v) \cdot r|}{|u \wedge v|},$$

where $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3), r = (x_0 - x_1, y_0 - y_1, z_0 - z_1).$