
Math 433 W 2019 - HW4 solution

Lesson plan, reading assignments and homework:

Week 3: Sections 2-5, 2-6, 3-2, 3-3, 4-2, 4-3 in do Carmo’s book.

These materials are a bit long in do Carmo’s book. An alternative option is to read (skip everything

about complex numbers) Hitchin’s notes page 45 to page 80, which is much shorter. We will firstly

follow Hitchin’s treatment and then add geometric interpretation, (the Gauss map for example).

This HW contains 5 problems plus one bonus problem, and will play a role in our future lecture.

100 total=5× 20 points. And 20 points bonus, which is hard.

1.. Consider the stereographic projection of the sphere to the plane, which is inverse of the map

R2 → S2\ (North Pole):

Solution. This is a straight forward computation: σx = ( 2+2y2−2x2

(1+x2+y2)2
, −4xy

(1+x2+y2)2
, 4x

(1+x2+y2)2
),

σy = ( −4xy
(1+x2+y2)2

, 2+2x2−2y2

(1+x2+y2)2
, 4y

(1+x2+y2)2
).

Taking E = σx · σx, F = σx · σy, G = σy · σy yields the result. The computation is straight forward:

for example, E = σx ·σx = 1
(1+x2+y2)4

[(4+4y4 +4x4 = 8y2−8x2−8x2y2)+16y2 +16x2] = 4(1+x2+y2)2

(1+x2+y2)4
.

Note that this is a conformal map between S2 \ (North Pole) and the plane.



2. (Characterization of conformal maps) Let φ : S → S̄ be a diffeomorphism between two surfaces

in R3. Such a map is called conformal if for all p ∈ S, and v1, v2 ∈ Tp(S) (the tangent plane) we

have

〈dφp(v1), dφp(v2)〉 = λ2〈v1, v2〉p

for some nowhere-zero function λ.(note: the book take this as the definition of a conformal map,

while we define angle preserving map as conformal and say the above is a characterization of

conformal maps.)

φ is said to be angle-preserving, if

cos(v1, v2) = cos(dφp(v1), dφp(v2)),

which means

〈v1, v2〉
‖v1‖‖v2‖

=
〈dφ(v1), dφ(v2)〉
‖dφ(v1)‖‖dφ(v2)‖

Prove that φ is locally conformal if and only if it preserves angles.

Solution.

The only if direction, just consider

And the if direction,

Take e1, e2 a set of orthonormal basis of TpS. Let:

< dφp(e1), dφp(e1) >= λ1

< dφp(e1), dφp(e2) >= µ

< dφp(e2), dφp(e2) >= λ2

Now take:

v1 = e1

v2 = cos θ e1 + sin θ e2

The equation in the question implies that:

cos θ =
λ1 cos θ + µ sin θ√

λ1

(
λ1 cos2 θ + 2µ sin θ cos θ + λ2 sin2 θ

)
Take θ = π

2
to get µ = 0. This implies that:



λ1 = λ1 cos2 θ + λ2 sin2 θ

Or λ1 = λ2. Hence:

〈dφp(e1), dφp(e1)〉 = λ1〈e1, e1〉p

〈dφp(e2), dφp(e2)〉 = λ1〈e2, e2〉p

〈dφp(e1), dφp(e2)〉 = λ1〈e1, e2〉p (= 0)

Since both 〈, 〉p and 〈dφp(), dφp()〉 are bilinear forms, the above is true for all v1, v2 ∈ TpS.



3. (Surface of revolution) We have a lot of examples(sphere, cylinder, hyperboloid, torus, etc) are

obtained by rotating a regular connected plane curve C about an axis in the plane which does not

intersect the curve. Usually, we take the xz plane as the plane of the curve C and the z-axis as the

rotation axis. We parameterize the curve C by

x = f(v), z = g(v), a < v < b, f(v) > 0,

and denote u by the rotation angle about the z-aixs. Then the map

σ(u, v) = (f(v) cosu, f(v) sinu, g(v))

is a parameterizations from the open set {0 < u < 2π, a < v < b} in R2 to the surface S.

Verify that the first and second fundamental forms are

I = f(v)2du2 + dv2, and (−1)II = fgvdu
2 + (fvgvv − fvvgv)dv2.

A picture(from do Carmo’s book) is given below:

Solution.

σv = (fv cosu, fv sinu, gv); σu = (−f sinu; f cosu; 0) :

So

E = f 2;F = 0;G = f 2
v + g2

v = 1.

Hence

I = f(v)2du2 + dv2.

Further, we have

σu ∧ σv = (−fgv cosu,−fgv sinu, ffv); ||σu ∧ σv|| = f. Hence

~n = (−gv cosu,−gv sinu, fv);

σvv = (fvv cosu, fvv sinu, gvv);

σuv = (−fv sinu, fv cosu, 0);

σuu = (−f cosu,−f sinu, 0).

So the second fundamental form II = −(fgvdu
2 + (fvgvv − fvvgv)dv

2), where L = σuu · ~n =

fgv(cos2 u+ sin2 u), M = σuv · ~n = 0, and N = σvv · ~n = fvgvv − fvvgv.



4.(Question 3-3-6 in do Carmo.)

Solution:

For part a), check the plane curve given by

α(t) : (0, π)→ R2, t→ (sin t, cos t+ log tan
t

2
),

where t is the angle between y-axis and the tangent vector α′(t).

Part b) is straight forward checking of definition.

(a) (b)

Figure 1. Pictures(from do Carmo’s book)



Part c): We indeed only deal with the upper half of the tractrix or pseudosphere, since it’s sym-

metric.

Note the curve in part a) is not arc-length parametrized. And there’re several different (indeed

equivalent) arc-length parametrizations of the tractrix. But if we start with the parametrization

in part a), the only way to do arc-length repara is to do s = − log sin t or sin t = e−s, since

|α′(t)| = − log sin t.

Then we have γ(s) = (e−s,
√

1− e−2s − arccosh(es)), s ≥ 0.

And in this case (by Q3 and arc-length) the second fundamental form is

II = −fgvdu2 + 0 + (fvgvv − fvvgv)dv2.

Then we have

K =
LN −M2

EG− F 2
= −gv(fvgvv − fvvgv)

f
,

plugging in f(v) = e−v, g(v) =
√

1− e−2v − arccosh(ev) yields the result.

5. (How to make a world map.)

Solution: For the sphere, we can regard it as a surface of revolution, and use question 3. And we

have IS2 = 1 · dφ+ cos2 φdθ2.

For the plane(or cylinder), we can directly compute its first fundamental form. We have

σθ = (1, 0, 0); σφ = (0,
1

2 tan(φ/2 + π/4) cos2(φ/2 + π/4)
, 0);

and hence σθ ∧ σφ = (0, 0, 1
2 tan(φ/2+π/4) cos2(φ/2+π/4)

).

Then we just check that

IR2 =
1

2 tan(φ/2 + π/4) cos2(φ/2 + π/4))2
dφ2 + 1 · dθ2.

Now we have at any point (θ, φ), IS2 = cos2 φ(IR2), this is because the 2 tan(φ/2 + π/4) cos2(φ/2 +

π/4)) simplified to be 2 sin(φ/2 + π/4) cos(φ/2 + π/4)) = sin 2[(φ/2 + π/4)] = cosφ.



Since the date line ( θ = 0, φ ∈ [−π/2, π/2] )is removed, we have cosφ is a nowhere zero

function on the plane. Hence by Q2 we know this is a conformal map.

To see this is not area-preserving is easy, either one can check the area element
√
EG− F 2 is

different for IS2 and IR2 , where on S2 it is cos2 φ and on R2 it is 1. Or just look at the following

picture and note that the red dots have the same area on the sphere but different areas on the

plane.

This sort of explains why US and Canada have about the same area, but Canada looks way larger

than US in the map.

Further reading: https://en.wikipedia.org/wiki/Mercator_projection

6. Bonus, hard, need to know complex number well (The upper half plane)

Consider the unit disk D = {x+ iy ∈ C|x2 + y2 < 1} with first fundamental form

4(dx2 + dy2)

(1− x2 − y2)2
, (compare this to Q1)

and the upper half plane D = {u+ iv ∈ C|v > 0} with the first fundamental form

(du2 + dv2)

v2
.

a) Show that there is an isometry form H to D given by

w → z =
w − i
w + i

,

where w = u+ iv ∈ H and z = x+ iy ∈ D.
b) Show that H with I = (du2+dv2)

v2
has constant Gaussian curvature −1.

c)(hard) Compare with Q1, D could be thought as a subset of the unit sphere, which has constant

Gaussian curvature +1. But we just found an isometry form H to D, which means D has Gaussian

curvature −1. Is there any contradiction?

d)(harder) The upper half plane and the pseudosphere as in Q4 both has constant K = −1. Can

you build some relation between them?



Figure 2. Geodesics in H, which we will mention in the future.

Solution:

a) This part could be found at Hitchin’s note page 59:

Firstly, denote |dz|2 = dx2 + dy2 and |dw|2 = du2 + dv2, if w = f(z) where f(z) is a holormophic

function, then we have the following claim: |dw|2 = |f ′(z)|2|dz|2 or we write

|dw|2 =
|dw|2

|dz|2
2

|dz|2.

Then we check that w → z = w−i
w+i

, and its inverse z → w = z+i
z−i are both holomorphic functions.

Then since IH = |dw|2/v2, we can change variable |dw|2 by |dw|
2

|dz|2
2
|dz|2, where f ′(z) = 2i

(w+i)
.

And we also compute that f ′(z)2 = −4
v2(w+i)2

= 4·(2i)2
(w−w̄)((w+i)2)

= 4
(1−z)(1−z̄) .

Hence under transformation w → z = w−i
w+i

, |dw|2 becomes 4
(1−z)(1−z̄) |dz|

2 = 4(dx2+dy2)
(1−x2−y2)2

= ID. This

means the map z = w−i
w+i

is an isometry.

To verify |dw|2 = |dw|2
|dz|2

2
|dz|2, one just do a direct computation from the Cauchy-Riemann equation,

which is f ′(z) = ux + ivx = uy − ivy.

b) There’s no dudv in IH , which means H has an orthogonal parametrization. The Gaussian

curvature is given by

K = − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

)

Here E = G = 1
v2

as given in IH , and direct computation yeilds K = −1.

c) There’s no contradiction. The statement “D could be thought as a subset of the unit sphere,

which has constant Gaussian curvature +1” is indeed false. There’s no isometry from D with the

above ID to any subset of a sphere with the 1st fundamental form in Q1.



Some further remark: Locally we are able to find some smooth invertible map making an open

region of the unit sphere having Gaussian curvature -1, but that cannot be done for the whole

sphere. We’ll further explain this in Gauss-Bonnet theorem.

d) The half pseudosphere(as the picture shown in Q4) of curvature −1 is covered by the portion of

the hyperbolic upper half-plane with y ≥ 1.

The covering map is periodic in the x direction of period 2π, and takes the line (in H it indeed

called “horocycles”) y = c to the meridians of the pseudosphere and the vertical geodesics x = c to

the tractrices that generate the pseudosphere.

More explicitly, the map is

(x, y) 7→ (arcosh(y)v cosx, arcosh(y)v sinx, arcosh(y)u)

and the tractrix is reparemetrized as

t 7→ (u(t) = t− tanh t, v(t) =
1

cosh t
).


