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Abstract

We develop techniques for studying the symplectomrophism group of rational 4-

manifolds.

We study the space of tamed almost complex structures Jω using a fine decom-

position via smooth rational curves and a relative version of the infinite dimensional

Alexander duality. This decomposition provides new understandings of both the varia-

tion and stability of the symplectomorphism group Symp(X,ω) when deforming ω. In

particular, we compute the rank of π0(Symp(X,ω)), with Euler number is less than 8

in terms of the number N of -2 symplectic sphere classes.

In addition, using the above decomposition and coarse moduli of rational surface

with a given symplectic form, we are able to determine π0(Symp(X,ω)), the symplectic

mapping class group (SMC). Our results can be uniformly presented regarding Dynkin

diagrams of type A and type D Lie algebras.

Applications of π0(Symp(X,ω)) and π0(Symp(X,ω)) includes the classification of

symplectic spheres and Lagrangian spheres up to Hamiltionian isotopy and a possible

approach to determine the full rational homotopy type Symp(X,ω).
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Chapter 1

Introduction

A symplectic manifold (X,ω) is an even dimensional manifold X with a closed, nonde-

generate two form ω. A symplectic submanifold S ∈ (X,ω) is a submanifold such that

ω|S is a symplectic form. A Lagrangian submanifold L ∈ (X,ω) is a submanifold such

that ω|L = 0.

Let (X,ω) be a closed simply connected symplectic manifold. the symplectomor-

phism group with the standard C∞-topology, denoted as Symp(X,ω), is an infinite

dimensional Fréchet Lie group. Understanding the homotopy type of Symp(X,ω) is

a classical problem in symplectic topology initiated by [19]. Let Jω be the space of

ω−tame almost complex structures. It is known that the stratification structure of Jω
is closely related to the topology of Symp(X) when dim(X) = 4 [19, 1, 3, 24] and [6],

etc. However, the study of the whole stratification of Jω is usually formidable even

when X is relatively simple [4][6].

Among all homotopy groups of Symp(X), π0(Symp(X)) and π1(Symp(X)) have

more direct geometric meaning. π0(Symp(X)), which we also call the symplectic

mapping class group (SMCG), is closely related to isotopy problems of symplec-

tic/Lagrangian submanifolds in X. π1(Symp(X)) is tied to Hofer geometry of Symp(X)

(cf. [48]) and quantum cohomology (cf.[50]). Also, generator of π1(Symp(X,ω)) is

also the generator of the rational homotopy groups of Symp(X,ω), for some rational

surfaces with small Euler number, as shown in [6, 5] Hence it is essential in determining

the full homotopy type of Symp(X,ω).

This dissertation is a summary of a series [29], [30] and [27], which studies the relation
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2

between πi(Symp(Xk)) for Xk = CP 2#kCP 2
and i = 0, 1, the lower stratification of

Jω and negative symplectic curves in symplectic rational manifolds.

1.1 A fine decomposition of the space of almost complex

structures

When (X,ω) is a rational symplectic 4-manifold, we consider the following natural

decomposition of Jω via smooth ω−symplectic spheres of negative self-intersection.

Let S<0
ω (S≤−2ω respectively) denote the set of homology classes of embedded ω-

symplectic sphere with negative self-intersection (square less than -1 respectively).

Definition 1.1.1. A subset C ⊂ S≤−2ω is called admissible if

C = {A1, · · · , Ai, · · · , An|Ai ·Aj ≥ 0, ∀i 6= j},

Given an admissible subset C, we define the real codimension of the label set C as

codR = 2
∑

Ai∈C(−Ai ·Ai − 1). And we define the prime subset

JC = {J ∈ Jω|A ∈ S has an embedded J−hol representative if and only if A ∈ C}.

In particular, for C = ∅, it has codimension zero, and the corresponding J∅ is often

called Jopen.

In section 2 (see Proposition 3.1.13 and Remark 3.1.15 for details), we will show that

a prime subset is either empty or a submanifold with real codimension of its labeling

set under a reasonable Condition 3.1.9. Notice that these prime subsets are disjoint.

Clearly, we have the decomposition: Jω = qCJC . Hence we can define a filtration

according to the codimension of these prime subsets:

∅ = X2n+1 ⊂ X2n(= X2n−1) ⊂ X2n−2 . . . ⊂ X2(= X1) ⊂ X0 = Jω,

where X2i := qCodR≥2iJC is the union of all prime subsets having codimension no less

than 2i. In [28] we prove the filtration is actually a stratification for a symplectic rational

4 manifold with Euler number χ(X) ≤ 8, see Remark 3.4.10. And in Section 2.1 of this
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paper we will give the proof of the following specific theorem focusing on X0,X2, and

X4, which suffices for applications in this paper:

Proposition 1.1.2. For a rational 4 manifold having Euler number χ(X) ≤ 8 and any

symplectic form, X4 = ∪cod(C)≥4JC and X2 = ∪cod(C)≥2JC are closed subsets in X0 = Jω.

Consequently,

• 1. X0 −X4 is a manifold.

• 2. X2 −X4 is a manifold.

• 3. X2 −X4 is a submanifold of X0 −X4

• 4. X2 −X4 is closed in X0 −X4.

By applying a relative version of the Alexander duality in [11], we get the following

computation of H1(Jopen) regarding S−2ω , which is the set of symplectic −2 sphere

classes.

Corollary 1.1.3. For a symplectic rational 4 manifold with Euler number χ(X) ≤ 8,

H1(Jopen) = ⊕Ai∈S−2
ω
H0(JAi).

1.2 Application to symplectomorphism group

Take a basis of H2(Xk,Z) as {H,E1, . . . , Ek}, where H is the line class, and Ei the

exceptional classes. Any symplectic form on a rational 4 manifold X = CP 2#kCP 2 is

diffeomorphic to a reduced form (Definition 2.1). And diffeomorphic symplectic forms

have homeomorphic symplctomorphism groups. Hence it suffices to understand the

symplectomorphism group Symp(X,ω) for an arbitrary reduced form ω. By normalizing

the symplectic form ω to be reduced with ω(H) = 1, we can identify ω as a vector

(1|, c1, c2, · · · , ck) ∈ Rk, We’ll describe the combinatorial structure and Lie theory aspect

of the cone of normalized reduced forms on X in section 2.1. For k ≤ 8, such a cone

is a k-dimensional polyhedron P k with the point Mk of monotone symplectic form as

a vertex. And we show in Lemma 2.1.10 that the collection of Lagrangian spheres is

a root system for (Xk, ω), k ≤ 8, which we call the Lagrangian root system. The set

R of edges of P k through the monotone point Mk one-to-one corresponds to the set of

simple roots of the Lagrangian root system of (Xk, ωmon), where ωmon is the monotone

symplectic form on Xk. Hence we call an element in R a simple root edge or root
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edge. And further, in section 2 we give the details of the following fact: the Lagrangian

root system of (Xk, ω) determines the simplicial structure where ω belongs to in P k and

vise versa.

Note that any symplectic form on a rational 4 manifold X = CP 2#kCP 2 is diffeo-

morphic to a reduced form. And diffeomorphic symplectic forms have homeomorphic

symplctomorphism groups. Hence it suffices to understand the symplectomorphism

group Symp(X,ω) for an arbitrary reduced form ω. We can further normalize the re-

duced form ω such that the line class H ∈ H2(X,Z) has area one, still denoted as ω.

And we can identify ω as a vector (1|c1, c2, · · · , ck) ∈ Rk, Specifically, we’ll describe

the combinatorial structure and Lie theory aspect of the cone of normalized reduced

forms on X in section 2.1. For k ≤ 8, such a cone is a k-dimensional polyhedron P k

with the point Mk of monotone symplectic form as a vertex. The set R of edges of P k

through the monotone point Mk one to one corresponds to the set of simple roots of the

Lagrangian root system of (Xk, ωmon), where ωmon is the monotone symplectic form on

Xk. Hence we call an element in R a simple root edge or root edge.

In Sections 4.2 and 5.1 we study the topology of Symp(X,ω), where X is a rational

4 manifold with Euler number χ(X) ≤ 8. Note that Symp(X,ω) = Symph(X,ω) o
Γ(X,ω), where Symph(X,ω) is the homological trivial part of Symp(X,ω), also called

the Torelli part. And Γ(X,ω) is called the non-Torelli part of Symp(X,ω), which is the

image of the induced map from Symp(X,ω) to Aut[H2(X,Z)].

The following diagram of homotopy fibrations, formulated in [13] (in the monotone

case) and adopted in [29] for a general ω, relates Jopen and Symph(X,ω):

Sympc(U)y
Stab1(C) −−−−→ Stab0(C) −−−−→ Stab(C) −−−−→ Symph(X,ω)y y y

G(C) Symp(C) C0 ' Jopen

(1.1)

Each term above is a topological group except C0 ' Jopen. We will carefully explain
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each term in Chapter 4 and here we only introduce the right end of diagram 1.1:

Stab(C)→ Symph(X,ω)→ C0 ' Jopen. (1.2)

Here C0 is the space of a full stable standard configuration of fixed homological type.

Every other term in diagram (1.1) is a group associated to C ∈ C0, and U = X \ C.

Now we give the definition of stable standard spherical configurations and the groups

will be discussed later in section 4.1.1.

Definition 1.2.1. Given a symplectic 4-manifold (X,ω), we call an ordered finite

collection of symplectic spheres {Ci, i = 1, ..., n} a spherical symplectic configuration,

or simply a configuration if

1. for any pair i, j with i 6= j, [Ci] 6= [Cj ] and [Ci] · [Cj ] = 0 or 1.

2. they are simultaneously J−holomorphic for some J ∈ Jω.

3. C =
⋃
Ci is connected.

We will often use C to denote the configuration. The homological type of C refers

to the set of homology classes {[Ci]}.
Further, a configuration is called

• standard if the components intersect ω-orthogonally at every intersection point

of the configuration. Denote by C0 the space of standard configurations having

the same homology type as C.

• stable if [Ci] · [Ci] ≥ −1 for each i.

• full if H2(X,C;R) = 0.

C0, the space of such configurations whose components intersect symplectic orthog-

onally, is indeed homotopic to Jopen, and admit a transitive action of Symph(X,ω).

Therefore we have the above homotopy fibration 1.2, where Stab(C) is the stablizer of

the transitive action. Moreover, the homotopy type of Stab(C) can often be explicitly

computed using the terms of the other parts of diagram 1.1. Hence if we can further

reveal the homotopy type of Jopen, which is very sensitive to the symplectic structure ω,

we may probe, at least partially, the homotopy type of Symph(X,ω) via the homotopy

fibration 1.2.
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Following this route, the full homotopy type of Symph(X,ω) in the monotone case

is determined in [13] for k = 3, 4, 5 (the smaller k cases follow from [19] and [1, 24]),

and π0 for a general ω is shown to be trivial in [29] for k = 4 (The smaller k cases follow

from [1, 3, 24, 6]). In addition, the non-compact cases [20] are very similar in idea. In

this paper we continue to follow this route and systematically analyze the persistence

and change of the topology of Symp(X,ω) under deformation of symplectic forms (such

phenomena were also discussed in [49, 51] and [39]).

1.2.1 Symplectic Mapping Class Group(SMC)

Recall that π0(Symp(X,ω)) is called the Symplectic mapping class group(SMC), and

it admits the short exact sequence

1→ π0(Symph(X,ω))→ π0(Symp(X,ω))→ Γ(X,ω)→ 1, (1.3)

where π0(Symph(X,ω)) is the Torelli Symplectic mapping class group(TSMC).

Theorem 1.2.2 (Main Theorem 1). Let (X,ω) be a symplectic rational 4-manifold with

Euler number no larger than 8. Then its Lagrangian -2 spheres form a root system ΓL

which is a sublattice of D5. There are 32 sub-systems, out of which 30 are of type A
(which is type A1, A2, A3, A4, or their direct product), and the other two of type D4 or

D5. We completely describe π0 of Symp(X,ω) in terms of ΓL as follows:

• When ΓL is of type A, the above sequence 1.3 is

1→ 1→ π0(Symp(X,ω))→W (ΓL)→ 1,

where W (ΓL) is the Weyl group of the root system ΓL. In other word,

π0(Symp(X,ω)) is isomorphic to W (ΓL);

• And when ΓL is of type Dn, sequence 1.3 is

1→ π0(Diff+(S2, n))→ π0(Symp(X,ω))→W (ΓL)→ 1,

where π0(Diff+(S2, n)) is the mapping class group of n-punctured sphere.
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The case of CP 2#5CP 2 is particularly interesting. It is the first time that the

forget strands phenomena is discovered for SMC(M2n), n > 1. And it is closely

related to question 2.4 in [54] which asked about the (co)kernel of the representation of

coarse moduli of projective hypersurfaces using their SMC, see the following discussion

for details. By the previous discussion, it suffices to consider only reduced forms. And

we list them in Table 5.1, together with the number of symplectic -2 sphere classes N

and the root system ΓL, where there are 30 cases ΓL is of type A and the other two

cases of type D4 or D5.

For CP 2#5CP 2, we choose the configuration C of 6 symplectic spheres in classes

{E1, E2, · · ·E5, Q = 2H −
∑5

i=1Ei}. Clearly the first five spheres are disjoint and

they each intersect the last one at a single point. The term Symp(C) in diagram 1.1,

which is the product of symplectomorphism group of each marked sphere component, is

homotopic to Diff+(S2, 5)× (S1)5. In the monotone case, [52] amounts to show there is

a subgroup π0(Diff+(S2, 5)) ⊂ π0(Stab(C)), which injects to π0(Symph(X,ωmon)); and

[13] showed Stab(C) is homotopic to Diff+(S2, 5) and the above injection is indeed an

isomorphism. Hence TSMC is π0(Diff+(S2, 5)). Note this is the case where ΓL = D5,

see Lemma 2.1.10.

When a symplectic form ω = (1|c1, c2, · · · , c5) has ci <
1
2 , we have the fibration 1.2

still being

Diff+(S2, 5) ∼= Stab(C)→ Symph(X,ω)→ C0.

To deal with the TSMC, we consider the following portion of the long exact sequence

of fibration 1.2:

π1(C0)
φ→ π0(Stab(C))

ψ→ π0(Symph(X,ω))→ 1. (1.4)

And π0(Stab(C)) = π0(Symp(X,ωmon)) = π0(Diff+(S2, 5)) can be identified with

P5(S
2)/Z2 where P5(S

2) is the 5-strand pure braid group on sphere. It admit a standard

generating set where each element Aij is the twist of the j−th point around the i−th

point, see Lemma 5.1.9. And when a normalized reduced form has ci <
1
2 , we can

use an explicitly constructed Semi-toric ball swapping model in Figure 5.2 to

analyze Im(φ), and show that when ci 6= cj , the ball swapping symplectomorphism

corresponding to braid generator Aij is in Im(φ).
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We show in Section 5.1 that the Torelli symplectic mapping class group(TSMC)

behaves in the way of “forgetting strands” as for the braid group on spheres when

deforming the symplectic form: One can think the curves in classes {E1, E2, · · ·E5} are

5 strands on Q and π0(Stab(C)) acting on them by the braid group. Recall (cf.[8]) there

is the forget one strand map

1→ π1(S
2 − 4 points)→ Diff+(S2, 5)

f1→ Diff+(S2, 4)→ 1

and the forget two strands map π0(Diff+(S2, 5))
f2→ π0(Diff+(S2, 3)), which is actually

the homomorphism to the trivial group since π0(Diff+(S2, 3)) = {1}. And we find that

map ψ in sequence (1.4) is the analogue of the forget strands map of π0(Symph(X,ω)):

• The form for which symplectic -2 sphere classes is minimal(8 classes) other than

the monotone point is a one dimensional family (a root edge) in Polyhedron P 5,

and they are all diffeomorphic to a normalized form having ci <
1
2 . On the one

hand, using Semi-toric ball swapping model we show that Im(φ) of 1.4 contains

π1(S
2 − 4 points); on the other hand, using coarse moduli of equal blow up of

Hirzebruch surface and overcoming difficulty of holomorphic bubbling, we extend

the argument in [52] to show π0(Symph(X,ω)) surjects onto π0(Diff+(S2, 4)) in

Proposition 5.1.18. And because π0(Diff+(S2, k)) is Hopfian, the map ψ is exactly

the forget one strand map f1. Note in this case, ΓL = D4.

• Further when the form admit more symplectic -2 sphere classes, we have propo-

sition 5.1.17 to deal with forms that are diffeomorphic to normalized forms with

c1 <
1
2 . Note that as far as the form has more than 8 symplectic -2 sphere class-

es, there are enough ball swapping symplectimorphism isotopic to identity, such

that Im(φ) contains a generating set of π0(Diff+(S2, 5)). We further have Lemma

5.1.11 which use Cremona transform, to show that the above results hold for any

balanced reduced symplectic form, where the non-balanced forms are in a subset

of the open chamber and lower (1 or 2) codimension walls. To deal with the re-

maining cases, we have Lemma 5.1.28 where we project a non-balanced form to

a codimension 2 wall and then use deformation type argument in [24]. Packing

these together we have Proposition 5.1.29, saying TSMC is trivial if and only if

there are more than 8 symplectic -2 sphere classes. And this time the map ψ in
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1.4 is homomorphism to the trivial group, which is the same as map f2. Note this

covers the 30 cases when ΓL is of type A.

For less or equal to 4-point blow up of the complex project plane, we gave a uniform

approach for the following result due to [19, 1, 2, 24, 6, 29]

Proposition 1.2.3. Symph(X,ω) is connected for a rational surface with Euler number

smaller than 8, with arbitrary symplectic form ω.

It could provide information of Symplectic/Lagrangian spheres together with the

the following proposition shown in [9] that:

Proposition 1.2.4. Suppose (X4, ω) is a symplectic rational manifold. Then

Symph(X,ω) acts transitively on the space of

• homologous Lagrangian spheres

• homologous symplectic −2-spheres

• Z2-homologous Lagrangian RP 2’s and homologous symplectic −4-spheres if

b−2 (X) ≤ 8

Hence we have the following corollary:

Corollary 1.2.5. For a rational manifold with Euler number up to 7, the space of

• homologous Lagrangian spheres,

• Z2-homologous Lagrangian RP 2,

• homologous −2 symplectic spheres,

• homologous −4 symplectic spheres,

is connected.

1.2.2 π1(Symph(X,ω)) and Topological Persistence

In the mean while, we are able to relate the fundamental group of Symp(X,ω) with

symplectic -2 sphere classes: On the one hand, for X = CP 2#kCP 2, k ≤ 5, we compute

H1(Jopen) by counting −2 symplectic sphere classes as in Corollary 3.4.7. On the other

hand, for X = CP 2#kCP 2, k ≤ 4 with arbitrary ω, Lemma 4.3.4 guarantees that
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H1(Jopen) is isomorphic to π1(Jopen) = π1(C0). Hence symplectic −2 sphere classes

determine π1(C0). And we further look at the following portion of long exact sequence

of fibration 1.2:

π1(Stab(C))→ π1(Symph(X,ω))→ π1(C0)→ 1. (1.5)

Note that in the cases we deal with, π1(Symp(X,ωmon)) = π1(Stab(C)) and it

always injects into π1(Symph(X,ω)). Hence π1(Symph(X,ω)) is determined as follows:

Theorem 1.2.6 (Main Theorem 2). If (X,ω) is a symplectic rational 4 manifold with

Euler number χ(X) ≤ 7, and N is the number of −2 ω−symplectic sphere classes, then

π1(Symp(X,ω)) = ZN ⊕ π1(Symp(X,ωmon)).

This means that π1(Symp(X,ω)) is persistent on the each open chamber or the

interior of each wall. And we observe the following amusing consequence.

Corollary 1.2.7. For any rational 4-manifold (X,ω) with Euler number χ(X) ≤ 7, the

integer

PR[Γ(X,ω)] +Rank[π1(Symp(X,ω))]

is a constant only depending on the topology of X, where PR[Γ(X,ω)] is the number of

positive root of the reflection group Γ(X,ω).

In addition, for X = CP 2#5CP 2, we use abelianization of sequence 1.5 to derive

a lower bound of the rank of π1(Symp(X,ω)) in Lemma 5.1.34 and Remark 5.1.35.

Together with Corollary 6.9 in [39], we can obtain the precise rank of π1(Symph(X,ω)

for most cases:

Proposition 1.2.8. Let X be CP 2#5CP 2 with a reduced symplectic form ω. If ci <

1/2, and TSMC is connected, then rank of π1(Symph(X,ω)) = N − 5, where N is the

number of symplectic -2 sphere classes.

Remark 1.2.9. Note that π1(Symp(X,ω)) is an Abelian group. In terms of ΓL, its

free rank can be often be precisely computed if ΓL is of type A and D5. And when ΓL

is of type D4, we have a fine estimate of the free rank. And hence we conjecture the
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persistence type result analogous to Corollary 1.2.7 will also apply here:

PR[Γ(X,ω)] +Rank[π1(Symp(X,ω))]−Rank[π0(Symph(X,ω))]

is a constant for X = (CP 2#5CP 2, ω), where ω is any symplectic form. Here rank of

π0(Symph(X,ω)) means the rank of its abelianization.

Finally we combine the analysis of π1 and π0 of Symp(CP 2#5CP 2, ω) to obtain the

following conclusion on -2 symplectic spheres:

Corollary 1.2.10. Homologous -2 symplectic spheres in CP 2#5CP 2 are symplectically

isotopic for any symplectic form.



Chapter 2

The normalized reduced

symplectic cone

In this chapter, we provide a comprehensive description of the structure of the Normal-

ized reduced symplectic cone a rational 4-manifold, with both its combinatorics and Lie

theoretical aspects. Any symplectic form on the rational 4 manifold is diffeomorphic

to a reduced one. We show that the cone of normalized reduced symplectic forms is

convexly generated by the set of root edges R, which is also the set of simple roots of

the Lagrangian root system.

2.1 Normalized reduced symplectic cone:

2.1.1 Reduced symplectic forms

It is convenient to introduce the notion of reduced symplectic forms. For X =

CP 2#nCP 2, let {H,E1, · · · , En} be a standard basis of H2(CP 2#nCP 2;Z) whereH

is the line class and Eis are the exceptional classes. We often identify the degree 2

homology with degree 2 cohomology using Poincaré duality.

Definition 2.1.1. Let X be CP 2#nCP 2 with a standard basis H,E1, E2, · · · , En of

H2(X;Z). Given a symplectic form ω such that each class H,E1, · · · , En has ω−area

12
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ν, c1, · · · , cn, then ω is called reduced (with respect to the basis)if

ν > c1 ≥ c2 ≥ · · · ≥ cn > 0 and ν ≥ ci + cj + ck. (2.1)

Remark 2.1.2. For CP 2#CP 2, the reduced condition is ν > c1 > 0; and for

CP 2#2CP 2, the reduced condition is c1 ≥ c2, c1 + c2 < ν.

The cohomology class of ω is νH−c1E1−c2E2−· · ·−cnEn. And with any J ∈ Jω on

CP 2#nCP 2, the first Chern class c1 := c1(J) ∈ H2(CP 2#nCP 2;Z) is K := 3H−
∑

iEi.

Let K be the symplectic cone of CP 2#nCP 2, i.e.

K = {A ∈ H2(CP 2#nCP 2;Z)|A = [ω] for some symplectic form ω}.

Because of the uniqueness of symplectic blowup Theorem in [37], the diffeomorphism

class of the form only depends on its cohomology class and we only need to consider

the fundamental domain for the action of Diff+(X)×R∗ on K. Further, [31] shows that

the canonical class K is unique up to Diff+(X) action, we only need to describe the

action of the subgroup DiffK ⊂ Diff+(X) of diffeomorphisms fixing K on KK = {A ∈
H2(CP 2#nCP 2|A = [ω] for some ω ∈ ΩK}, where ΩK is the subset of symplectic cone

with K as the symplectic canonical class. Now we recall [31] that

Theorem 2.1.3. The fundamental domain of DiffK acting on KK is the set of reduced

classes νH − c1E1 − c2E2 − · · · − cnEn.

We give the following change of basis in H2(X,Z) in preparation for section 3. Note

that X = S2 × S2#kCP 2, k ≥ 1 can be naturally identified with CP 2#(k + 1)CP 2.

Denote the basis of H2 by B,F,E′1, · · · , E′k and H,E1, · · · , Ek, Ek+1 respectively. Then

the transition on the basis is explicitly given by

B = H − E2,

F = H − E1,

E′1 = H − E1 − E2, (2.2)

E′i = Ei+1,∀i ≥ 2,
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with the inverse transition given by:

H = B + F − E′1,

E1 = B − E′1,

E2 = F − E′1, (2.3)

Ej = E′j−1, ∀j > 2.

νH − c1E1 − c2E2 − · · · − ckEk = µB + F − a1E′1 − a2E′2 − · · · − ak−1E′k−1 if and

only if

µ = (ν−c2)/(ν−c1), a1 = (ν−c1−c2)/(ν−c1), a2 = c3/(ν−c1), · · · , ak−1 = ck/(ν−c1).
(2.4)

Hence

Lemma 2.1.4. For X = S2 × S2#nCP 2, any symplectic form ω is diffeomorphic to a

reduced form and it can be further normalized to have area:

ω(B) = µ, ω(F ) = 1, ω(E′1) = a1, ω(E′2) = a2, · · · , ω(E′n) = an

such that

µ ≥ 1 ≥ a1 ≥ a2 ≥ · · · ≥ an and ai + aj ≤ 1. (2.5)

We also have the adjunction formula for embedded symplectic spheres:

Let A be the homology class of an embedded symplectic sphere and K the canonical

class, then we have

K ·A+A ·A+ 2 = 0 (2.6)

Note that the canonical class K for a reduced form can be written down as K =

−2B − 2F +
∑n+1

i=1 E
′
i or K = −3H +

∑n+1
i=1 Ei.

And we also observe the useful fact, which will be applied in section 5.1:

Lemma 2.1.5. Let X be CP 2#nCP 2 with a reduced symplectic form ω, and ω is

represented using a vector (1|c1, c2, · · · , cn). Then En has the smallest area among

exceptional sphere classes in X.
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Proof. One can explicitly write down the exceptional spheres using basis H,E1, · · · , En,
Then because the form is reduced, the canonical class can be written as K = −3H +

E1 + · · · + En. Then by Adjunction formula 2.6, for any exceptional sphere class

A = dH −
∑

i aiEi, K · A = −1. By the reduced assumption, ω(E1) ≥ · · · ≥ ω(Ei) ≥
· · · ≥ ω(En). Because the form is reduced, then ω(H −Ei −Ej −Ek) ≥ 0 for any i, j, k

if there is no repeated E1 or E2. We now verify that the curve A = dH −
∑

i aiEi can

always be rearranged such that it is the sum of d curves: d − 1 of them in homology

class H −Ei−Ej −Ek with no repeated E1 or E2 and one curve in H −Ei−Ej which

is neither H − 2E1 nor H − 2E2.

Firstly, for the coefficient of H, choose any positive partition of d into d − 1 parts,

each as the coefficient one of d−2 curves of type H−Ei−Ej−Ek and one H−Ei−Ej .
Note that the genus of A is larger than 0, which means any coefficient ai cannot exceed

d− 1, in particular, a1, a2 ≥ d− 1.

Hence for the coefficient of E1, it is always possible to choose a positive integral

partition of the a1 into a1 parts, which means that there are a1 different curves of

type H − Ei − Ej − Ek having E1 component. And the same can be done for E2,

such that there are a2 different curves having the form H − Ei − Ej − Ek where

H−Ei−Ej−Ek ·E2 = 1. After the two steps, we can rearrange the rest Ei’s arbitrarily.

Then it is easy to see that we have the desired rearrangement of A = dH−
∑

i aiEi. And

clearly, ω(A) = ω(dH −
∑

i aiEi) ≥ ω(Ek),∀k. This argument means any exceptional

sphere class A has an area no less than cn.

2.1.2 Combinatorics: Normalized Reduced symplectic cone as poly-

hedron

For a rational 4 manifolds X, the space of normalized reduced symplectic form is called

Normalized Reduced symplectic cone (see section 2.2.2 for its relation with the

symplectic cone). When χ(X) < 12, it is a strongly convex polyhedron generated by its

edges, as defined below:

Definition 2.1.6. A closed convex polyhedron is defined as Pc := {~x ∈ Rn|A(~x −
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~x0) ≤ 0}, where ~x is a n-dimensional column vector and A = [~a1, · · · ,~an]t is a non-

singular matrix. And a facet Fm is a codimension 1 subset of Pc, where Fm := {~x ∈
Rn|~atn · ~x = 0}.

Remark 2.1.7. Similarly, we can define a open convex polyhedron Po := {~x ∈
Rn|A(~x−~x0) < 0}, which can be realized as removing all facets from the corresponding

closed convex polyhedron. For simplicity, we call a subset of a closed convex polyhedron

Pc a polyhedron P , if P is the complement of a union(possibly null) of facets. A k-

face, 0 ≤ k ≤ n is a subset of P given by n−k equations: {~x|~atri = 0, ri = 1, · · · , n−k},
where atri is a row vector of matrix A. In particular, we use the following names

interchangeably: a vertex is a 0-face and obviously ~x0 is a vertex point; a edge is a

1-face; and a facet is a (n− 1)−face. an open chamber is an n-face; and a wall is a

k-face where k < n. And we can compare this with remark 2.2.5

Proposition 2.1.8. For X = CP 2#kCP 2, 3 ≤ k ≤ 8, the normalized reduced symplec-

tic cone is defined as the space of reduced symplectic forms having area 1 on H, the line

class. It is a polyhedron with a vertex being the monotone form.

Proof. For X = CP 2#kCP 2, 3 ≤ k ≤ 8, we normalize the form into the vector

(1|c1, · · · , ck). There is a form ωmon = (1|13 , · · · ,
1
3), called the monotone form. We con-

sider the form (c1, · · · , ck) ∈ Rk. There is a linear translation moving Mk = (13 , · · · ,
1
3)

to 0. And under this linear translation, it is easy to see from 2.1 that the image of

all reduced symplectic form is a polyhedron P , i.e., if (1|c1, · · · , ck) is a reduced form,

then for x = (c1 − 1
3 , · · · , ck −

1
3), the reduced condition 2.1 can be written as subset of

{x ∈ Rk, Ax ≤ 0}, for some matrix A ∈ GLk(Z), with one or two facet removed. And

further, P ∩ (−P ) = {0}, because {x ∈ Rk, Ax ≤ 0} ∩ {−x ∈ Rk, Ax ≤ 0} = 0. This

means the space of reduced form is a strictly convex polyhedron, with a vertex being

the monotone form.

And for the above manifolds X and their reduced cone P , any k−face is convexly

generated by their root edge R, denoted by PS . The interior of PS is called a wall of

the reduced cone.

Remark 2.1.9. For smaller rational manifolds, the cone is easier to describe, as illus-

trated in section 2.2.2.



17

2.1.3 Lie theory: Wall and chambers labeled by Dynkin diagram

This part is to review some Lie theoretic aspects of rational 4-manifolds. And in the

next section, we will identify the root of a rational 4-manifolds (as defined below) with

the edge of its normalized reduced symplecic cone.

Firstly, Lagrangian -2 sphere classes in rational manifolds generate a Root system.

And we start with a reformulation of facts in [35], giving the concept of monotone

Lagrangian root system in 2.1.11.

Note that for a rational 4-manifold with Euler number χ(X) < 12 equipped with a

reduced symplectic form, the number of Lagrangian sphere classes is finite and can be

described as root system correspond to a simple laced Dynkin diagram in the following

way: Now let X be a Del Pezzo surface of degree d which is not isomorphic to P1 × P1.

Define r := 9− d, d is the degree of X. There exists a basis of PicV : H,E1 · · ·Er. For

an integer r we define (Nr,Kr, 〈·, ·〉) and subsets Rr, Ir ⊂ Nr.

• Nr :=
⊕

0≤i≤r
Z ·Ai where Ai is the above basis.

• Kr := (−3, 1, 1, . . . , 1) ∈ Nr.

• 〈·, ·〉 is a bilinear form Nr ×Nr → Z given on the basis by

〈H,H〉 = 1

〈Ei, Ei〉 = −1 for i ≥ 1,

〈Ei, Ej〉 = 0 if i 6= j.

• Rr := {A ∈ Nr | 〈A,Kr〉 = 0, 〈A,A〉 = −2},

• Ir := {A ∈ Nr | 〈A,Kr〉 = 〈A,A〉 = −1}.

Then it is well known(see [35]) that one can describe these root systems Rr in terms

of the standard irreducible root systems:

Lemma 2.1.10. The −2 classes in Rr of a Del Pezzo surface Xr of degree 9 − r, 2 ≤
r ≤ 8 form a root system Er:
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r 2 3 4 5 6 7 8

Rr A1 A1 × A2 A4 D5 E6 E7 E8

|Rr| 2 8 20 40 72 126 240

Remark 2.1.11. In the above Lemma 2.1.10, the root system only depends on the

smooth topology of the ambient manifold, and we denote it by Γ(Xr), and name it as

the monotone Lagrangian root system of Xr.

Recall from Lie algebra that the set of roots Rr = R(Γ(Xr)) = R+(Xr) ∪−R+(Xr)

where R+(Xr) is the set of positive roots, which is defined here as R+(Xr) := {A ∈
R(Γ(Xr))|A · [ω] > 0, [ω] is the class of a reduced form ω}. And R+(Xr) is positive

integrally spanned by a set of simple roots, which 1-1 corresponds to the vertices in the

Dynkin diagram of ΓL.

Denote E0 = E1 = ∅,E2 = A1, E3 = A1 × A2,E4 = A4,E5 = D5, then Xk :=

CP 2#kCP 2, 0 ≤ k ≤ 8 has root system Ek.

2.1.4 Identifying edges with roots

We know from Proportion 2.1.8 that for X = CP 2#kCP 2, 3 ≤ k ≤ 8, the normalized

reduced cone is convexly generated by its edges. And the edges are labeled using M

the monotone point and another vertex, e.g. O,A,B, · · · . Also, any k-face contains M

as a vertex, and any vertex other than M is 1-1 corresponding to a edge. On the other

hand, Lie theory together with Lemma 2.1.10 tells us that the -2 sphere classes form

a set of positive roots of the manifolds above, where the reduced condition gives us a

canonical set of simple roots by fixing a chamber.

The fundamental observation is that an edge appearing in the closure of the k-face

PS corresponds to a simple root of the lagrangian system. And hence we often call the

edge in the normalized reduced cone a root edge. This fact can be thought in this way:

the equation of an edge in the polyhedron is equivalent to fixing one “ ≥ ” as “ = ” and

every other “ ≥ ” as “ > ” in equation (2.1); and this is equivalent to the existence of

a unique Lagrangian simple root in Lemma 2.1.10. For Xk = CP 2#kCP 2, 3 ≤ k ≤ 8,

there is a standard choice of simple roots given in this way: MO = H −E1 −E2 −E3,

MA = E1 − E2, MB = E2 − E3, · · · , MLk−1 = Ek−1 − Ek, · · · , MG = E7 − E8.

Note that they being symplectic or Lagrangian corresponds to the sign being “ > ”
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or “ = ” respectively in the reduced condition 2.1: λ := c1 + c2 + c1 ≤ 1, c1 ≥ c2, . . .

ck−1 ≥ ck.

Remark 2.1.12. From the Lie theoretic aspect, there is a polyhedron P kL constructed

from the Dynkin diagram. And we can compare it with P k, which is the normalized

reduced symplectic cone given combinatorially as in Proposition 2.1.8.

• P kL ∼= P k, as subsets in Rk.
Further, in the monotone point of the normalized reduced cone, all simple roots

are Lagrangian, and the root edges form the root lattice of the manifold ΓX . On each

wall, the set of edges not in the closure of the wall form a set of simple roots of the

Lagrangian sublattice ΓL, whose Weyl group will be shown to be the homological action

of Symp(X,ω), ω ∈ PS . And indeed,

• Denote the wall of sublattice in P kL by WL and the wall of corresponding vertices

in P k by WV . Then WL
∼= WV , as subsets in Rk.

As discussed above, each wall(or chamber) is labeled by Lagrangian root sys-

tem(Dynkin diagram). And the set of Symplectic -2 sphere classes, which is also

labeled on the wall. Here we give the Lie algebraic way to observe this fact:

SS(ΓL) = R+(X) \R+(ΓL), (2.7)

where SS(ΓL) is the set of Symplectic -2 sphere classes of the wall labeled by ΓL,

while R+(X)(and R+(ΓL)) means the set of positive roots of the manifold X (and ΓL

respectively).

2.1.5 A uniform description for reduced cone of M when χ(M) < 12

For Xk = CP 2#kCP 2, 3 ≤ k ≤ 8, the normalized reduced cone P k can be described

uniformly in both ways:

Combinatorially, it is obtained by the polyhedron using the reduced condition 2.1,

as in Proposition 2.1.8. The effect of the blowdown process on the cone can also be

described explicitly. For any rational 4 manifold with χ(X) < 12 the reduced cone of

them are unified in this way: Take the closure of P 8 and obtain P 8
c . P 8

c − P 8 is the

closure of P 7, denoted by P 7
c . while projecting P 8

c to the plane c8 = 0, one get closure

of P 7
c . This operation is to blow down along E8. And the monotone point of P 7

c is
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obtained by projecting P 8
c to plane c8 = 0. And for k ≥ 4, one can do the same by

induction: projecting P kc to the plane ck = 0 and obtain P k−1c , where the monotone

point is preserved under this blowdown operation. And start from P 3
c , which will be

illustrated and remarked in 2.2.3, 2.2.2,2.2.1, projecting to plane c3 = 0, one get the

P 2
c , but the monotone point is not preserved this time. Further, from P 2

c one obtain

the normalized reduced cone of S2 × S2 and one point blow up.

Correspondingly, Lie theoretic approach goes this way:

Start from P 8
c labeled by E8 with all simple roots MO,MA, · · · ,MG :

MCMBMA MD ME

MO

MF MG
E8

Blowing down one get P 7
c labeled by E7 with simple roots MO,MA, · · · ,MF :

MCMBMA MD ME

MO

MF
E7

Blowing down one more time one get P 6
c labeled by E6 simple roots MO, MA,

· · · ,ME :

MCMBMA MD ME

MO

E6

Blowing down one more time one get P 5
c labeled by D5 simple roots MO,MA, · · · ,MD.

Note this is X5 = CP 2#5CP 2.

MO

MD

MCMBMA
D5
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Blowing down one more time one get P 5
c labeled by A4 simple rootsMO,MA, · · · ,MC.

Note this is X4 = CP 2#4CP 2.

MA MB MC MO
A4

2.2 Examples: CP 2#kCP 2, k = 1, 2, 3 and remarks for k >

9

To make the above general discussion clear, we give an example using CP 2#kCP 2, k =

1, 2, 3,:

2.2.1 Examples: CP 2#kCP 2, k = 1, 2, 3

Explicit cone structure and illustration will be given for CP 2#kCP 2, k = 1, 2, 3:

The case of CP2#3CP2

O
c1

c3

c2 B : (12 ,
1
2 , 0)

A : (1, 0, 0)

M : (13 ,
1
3 ,

1
3)

Figure 2.1: Normalized Reduced cone of CP 2#3CP 2

In picture 2.1, the tetrahedron MOAB is the normalized reduced symplectic cone,

which further described using table 2.1. And the open chamber is the space of reduced

forms λ := c1 + c2 + c3 < 1; c1 > c2 > c3. A wall of codimension k is a the connected

subsets of the closure of this open chamber where k number of “ > ” made into “ = ”.

Also, N and NL are the number of Symplectic (or Lagrangian respectively) -2 sphere
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k-Face NL N ω−area and position in the cone

Point M, 4 0 (13 ,
1
3 ,

1
3): monotone

Edge MO: 3 1 λ < 1; c1 = c2 = c3
Edge MA: 2 2 λ = 1; c1 > c2 = c3
Edge MB: 2 2 λ = 1; c1 = c2 > c3
∆MOA: 1 3 λ < 1; c1 > c2 = c3
∆MOB: 1 3 λ < 1; c1 = c2 > c3
∆MAB: 1 3 λ = 1; c1 > c2 > c3
TMOAB: 0 4 λ < 1; c1 > c2 > c3

Table 2.1: Reduced cone of X3 = CP 2#3CP 2

classes associated with each wall, where in this case N = NL = 4 because there are 4

smooth -2 sphere classes. And we can describe the reduced cone as follows:

• The monotone case (point M) where there is no symplectic −2 sphere classes. And

3 Lagrangian simple roots MO = H−E1−E2−E3, MA = E1−E2, MB = E2−E3

form ΓX3 with the Dynkin diagram:

MA MB MO
A1 × A2

• one walls MO, corresponding to ΓL = A2, which is obtained from ΓX3 removing

MO:

MOMA MB
A2

• MA, corresponding to ΓL = A1 ×A1, which is obtained from ΓX3 removing MA:

MA MB MO
A1 × A1

• MB, corresponding to ΓL = A1 × A1 which is obtained from ΓX3 removing MB:

MA MB MO
A1 × A1
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• 3 walls of codimension 1: 3 facets of the tetrahedron, triangle OAM, OBM, MAB,

each corresponding to ΓL = A1 lattice of node MB, MA and MO respectively(by

removing all other vertices). Note that the horizontal dashed triangle OAB is not

a root hyperplane. Instead, it is the blowdown of X, see Remark 2.2.1

• The open chamber of reduced forms, which is the interior of the tetrahedron

MOAB, denoted by TMOAB where 4 spherical -2 class are all symplectic and the

Lagrangian lattice ΓL is ∅.

Remark 2.2.1. Note that the projection onto plane c3 = 0 is the closure of the

normalized reduced cone of CP 2#2CP 2, which is performing a blow down along E3.

The case of CP2#2CP2

The picture below is the reduced cone of CP 2#2CP 2, which is a closed polyhedron

with two facets removed:

O
c1

c2

c1 = c2
A : (1, 0)

B : (12 ,
1
2)

To obtain the whole symplectic cone, one just apply the reflection of A1 to the

reduced cone. And we can describe the reduced cone as follows:

• One wall OB where the symplectic form is on the line c1 = c2, and the edge BO

is a Lagrangian -2 sphere forming ΓL with the Dynkin diagram

A1
BO

• One open chamber, the interior of ∆BOA, there’s no Lagrangian -2 sphere which

means ΓL is null. And symplectic −2 spheres is the whole R+ = {E1 − E2}.



24

Remark 2.2.2. Note that the edge OA and AB are not in the reduced cone of

CP 2#CP 2.

OA is the normalized reduced cone of CP 2#CP 2 as the previous case. Hence

projecting to the c2 = 0 axis is to blow down along E2.

AB is the normalized reduced cone of S2 × S2. The reason is follows. Think

CP 2#2CP 2 as S2 × S2#CP 2 with basis B,F,E. Take the base change as in equation

2.2, we have on AB, ω(B) = 1− c2, ω(F ) = 1− c1 and ω(E) = 1− c1 − c2 = 0. Hence

on AB we actually have S2×S2 and the ratio of the area of the two spheres can be any

real number no less than 1. Hence projecting to the c1 + c2 = 1 direction is the same

as blowing down H − E1 − E2.

The case of CP2#CP2

The picture below is the reduced cone of CP 2#CP 2, it is slightly different from the

latter cases because monotone form is not a vertex:

O
c1

A : c1 = 1

Remark 2.2.3. Note that the point O is not in the reduced cone. Instead, it stands for

CP 2 with the Fubuni-Study form. Hence projection toward O direction means blowing

down along E1.

2.2.2 Symplectic cone and Normalized reduced cone, and discussion

for general cases

This section is a discussion, which contains no result needed.

First, we discuss the relation of the normalized reduced cone with the symplectic

cone as following for X = CP 2#nCP 2, following notation in [25].

We start from the positive cone P = {e ∈ H2(X;R)|e · e > 0}. This is a subset

of Rn+1, which is called the positive cone. A corollary of [26] is that the action of

Diff(X) on H2(X,Z) is transitive on the positive cone P. When χ(X) < 12, reflection

along elements Ir (defined in front of Lemma 2.1.10) is finite, denoting D−1, and the

fundamental domain of this action is called the P-Cell. For the basis and canonical class

K given in 2.1, when Euler number is less than 12, the P-Cell is PC = {e ∈ P|K ·e > 0}.
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The P-Cell can be thought as the fundamental domain under the reflection along hyper-

planes of -1 curves D−1. For the P-Cell of rational manifold with larger Euler number,

see Remark 2.2.4.

And we can apply Cremona transform on the P-Cell, which is the reflection along

hyperplane of -2 curves. And the Cremona transform is the Weyl group of the root

system given in Lemma 2.1.10. The fundamental domain of DiffK(X) as in Theorem

2.1.3 is the space of reduced forms Pr. In a Lie theoretic point view, this is to take

the intersection of the P-Cell with the chamber of reduced form the Weyl arrangement,

we obtain Pr. Precisely, start with Euclidean space Rn+1 with an arrangement of

hyperplanes called the root hyperplane of the root system of X as given in Lemma

2.1.10, the connected component of the complement of the union of the root hyperplane

is called the Weyl chamber.

And we normalize symplectic forms in Pr such that any form has area 1 on H class.

Then we obtain the corresponding so-called normalized reduced cone of M. We’ll

see immediately this normalized reduced cone is a polyhedron of dimension n and we

denote it by Pn for Xn = CP 2#nCP 2.

More explicitly, there is an open chamber and many walls(open part of root hyper-

plane): Suppose we blow up CP 2 with Fubini-Study form ωFS k times to obtain X,

i.e. the line class H has area 1. And suppose the blow up sizes are c1, c2, · · · , cn(one

can denote the form by (1|, c1, c2, · · · , cn),) satisfying the reduced condition 2.1. Then

the open chamber is given by the forms ω = (1|, c1, c2, · · · , cn) such that any ≥ in 2.1

replaced by >. And the walls are given by the forms ω = (1|, c1, c2, · · · , cn) such that

some ≥ in 2.1 replaced by =.

Remark 2.2.4. When n ≥ 9, the P-Cell needs to be cut by one more quadratic equation

and a K-positive equation. Further, the Cremona transform group is infinite, guided by

Kac-Moody algebra, see [57] for details.

Then we compare our Polyhedron with cone as in the next remark:

Remark 2.2.5. Let C ∈ Rn be a subset of a finite dimensional real vector space. We

say that C is a cone (respectively convex subset) if whenever α and β ∈ C then λα +

µβ ∈ C for all λ ≥ 0, µ ≥ 0, (respectively such that λ + µ = 1). We say that C is

strictly convex if C contains no positive dimensional linear subspaces, or equivalently,
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C ∩ (−C) = {0}. We say that R ∈ C is a ray of a cone C if R = R+α, for some nonzero

vector α ∈ C. We say that R is an extremal ray if whenever β + γ ∈ R, where β and

γ ∈ C, then β and γ ∈ R.
One find that the closed convex polyhedron with the origin as a vertex can be

obtained by taking the intersection of the cone C with the half space H = {~x ∈ Rn|at~x ≤
0}, which contains the origin.

By [14], section 1.2 (13), strictly convex cone is generated by its rays. And indeed,

we can choose the extremal ray as generators of the cone of reduced forms. Because

of the above Remark, we often call it the normalized reduced symplectic cone or

reduced cone. And a root edge of the cone refers to the edges of the polyhedron while

a wall of the cone refers to the interior of the k-face of polyhedron P , 2 ≤ k < n = dimP.

Finally, we give another equivalent (combinatorial) way to interpret symplectic

spheres and Lagrangian spheres as in 2.7:

Remark 2.2.6. A generic symplectic form ω corresponds to an open chamber of the

Weyl arrangement of En. And fix such generic form is the same as choosing a polariza-

tion of the root system, and hence determining a set of positive roots R+
r , each of them

can be represented by a smooth embedded symplectic -2 sphere. And on each root

hyperplane(wall), as the form deformed, some of them become Lagrangian -2 sphere

classes while the rest classes in R+
r remain symplectic. And any -2 symplectic sphere

in CP 2#kCP 2, k ≤ 5 are in classes Ei − Ej or H − Ei − Ej − Ek. We will perform a

base change and we can list the set of positive roots R+
k+1 of S2×S2#kCP 2, k ≤ 4 w.r.t

this form explicitly in Remark 3.4.4. Hence we have a another description of SSS of

ω−symplectic sphere classes and the set LSS of ω−Lagrangian sphere classes of each

wall: LSS is the set of positive roots, and SSS is the complement of LSS in R+(X).

And the wall is naturally labeled with the set SSS of ω−symplectic sphere classes and

the set LSS of ω−Lagrangian sphere classes for ω ∈ int(PS). Specifically, each root

edge Ri is labeled with SSRi and LSRi . And there are simple relations about the sets

on the wall SSS , LSS and the sets on the root edges SSRi and LSRi :

SSS = ∪Ri∈SSSRi ; LSS = ∩Ri∈SLSRi .

And we denote the cardinality of SSS , LSS by N and NL respectively.



Chapter 3

The space of almost complex

structures

In this chapter, we study the space of tamed almost complex structures Jω of a symplec-

tic 4 manifold X with given symplectic form ω, and define a decomposition of Jω via

smooth rational curves into prime submanifolds. For CP 2#kCP 2, k ≤ 5 with arbitrary

symplectic form ω, we directly prove that such decomposition is indeed a stratifica-

tion in the sense that taking closure agrees with the codimension at certain levels, see

Proposition 3.4.1.

Throughout this section we identify CP 2#kCP 2 with S2 × S2#(k − 1)CP 2 and

apply base change 2.2 to use the basis B,F,E1, · · · , Ek−1 as basis of H2(X). The

purpose is to make the notation compatible with [6], where Lemma 3.2.1 can be think

as generalization of Lemma 2.10 in [6].

3.1 Decomposition of Jω via smooth rational curves

3.1.1 General facts of J-holomorphic curves and symplectic spheres

We review general facts of J-holomorphic curves for symplectic 4-manifold. Firstly the

local properties due to Gromov [19], McDuff [37]:

Theorem 3.1.1 (Positivity). In a given closed symplectic 4-manifold (X,ω), let C,C ′ be

two closed J-holomorphic curves. Then the contribution kp of each point of intersection

27
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of C and C ′ to the intersection number C · C ′ is a strictly positive integer. It is equal

to 1 if and only if C and C’ are both regular at p and meet transversally at that point.

Theorem 3.1.2 (Adjunction Inequality). Let(X4, J) be an almost complex manifold

and u : Σ → M is a J-holomorphic curve which is not a multiple covering. Then the

virtual genus of the image C = Im(u) is defined as gv(C) = (C ·C−c1(C))/2+1, which

is always no less than the genus of Σ, where equality holds if and only if the map is an

embedding.

Then we need to recall Gromov Compactness Theorem (cf [19],[42]) and Fredholm

framework:

Theorem 3.1.3 (Gromov Compactness Theorem). Let (X,ω) be a compact closed,

connected symplectic manifold, and let (Jn) ∈ Jω be a sequence which converges to J0

in C∞-topology. Let Σ be a compact, connected Riemann surface without boundary, and

let (jn) be a sequence of complex structures on Σ. Suppose un : Σ → M is a sequence

of (Jn, jn)−holomorphic curves such that

u∗n[Σ] = [A] ∈ H2(X;Z), [A] 6= 0.

Then up to a re-parametrization of each un, there are

• finitely many simple closed loops γi in Σ,

• a finite union of Riemann surfaces Σ′ = ∪αΣα, which is obtained by collapsing

each of the simple closed curves γi on Σ to a point,

• a continuous map u : Σ0 → M such that u|Σα is a (J, j0)-holomorphic curve,

where j0 is the complex structure on each component of Σ0,

such that

• a subsequence of {un}, converges to u and in the complement of any fixed open

neighborhood of ∪iγi, jn converges to j0 in C∞-topology;

•
∑

α u∗([Σα]) = [A] ∈ H2(X;Z).
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Following Gromov, we call the limiting curve u : Σ0 → M a cusp curve. We are

particularly interested in the case when the J-holomorphic curve has a sphere as its

domain.

Let Sω denote the set of homology classes of embedded ω-symplectic sphere with

negative self-intersection. Let

S<0
ω , S≥0ω , S−1ω , S≤−2ω

be the subsets of classes with self-intersection negative, non-negative, −1 and less than

−1 respectively. Meanwhile we call the classes in S≤−2ω K-nef classes, because they are

sphere classes that are numerical effective on the canonical class K.

If A ·A = −k, k ∈ Z+, we define codA = 2ki − 2 the codimension of the curve class.

And if A ·A ≥ −1, the codimension of the curve class is defined as 0.

Proposition 3.1.4 (Exceptional sphere and Non-negative sphere). Let(X4, ω) be a

closed symplectic 4-manifold and A a class in S−1ω or S≥0ω . Then for a generic J ∈ Jω,

there is an embedded J−holomorphic curve in the class A.

Using the Fredholm framework the following is proved in [6] Appendix B.1:

Proposition 3.1.5. Let (X,ω) be a 4-dimensional symplectic manifold. Suppose

UC ⊂ Jω is a subset characterized by the existence of a configuration of J-holomorphic

embedded spheres C1 ∪ C2 ∪ · · · ∪ CN of negative self-intersection whose classes

{[C1], [C2], · · · , [CN ]} = C. Then UC is a cooriented Fréchet submanifold of Jω of (real)

codimension codimR(UC) = 2N − 2c1([C1] + · · ·+ [CN ]).

3.1.2 Prime submanifolds

Now we give conditions to well define the decomposition of Jω of a general symplectic

4-manifold (X,ω) via smooth rational curves into prime subsets. And we further give

a condition when prime subsets are sub manifolds.

Definition 3.1.6. Given a finite subset C ⊂ S<0
ω ,

C = {A1, · · · , Ai, · · · , An|Ai ·Aj ≥ 0 if i 6= j},
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define prime subsets

JC = {J ∈ Jω|A ∈ S has an embedded J−hol representative if and only if A ∈ C}.

And we define the codimension of the label set C as the sum of the codimension of each

curve class, i.e. codC =
∑

Ai∈C codAi .

Clearly, we have the decomposition: Jω = qCJC . We will show in Proposition

3.1.13 that, under certain conditions, JC is a submanifold of Jω of real codimension

codC =
∑

Ai∈C codAi .

Remark 3.1.7. Note that in [6] Lemma 2.10, there is a decomposition of Jω for

CP 2#3CP 2 where each stratum is characterized by the existence of a certain negative

curve. Their decomposition is shown to be a stratification with finite codimension

submanifolds as strata. We point out that our decomposition is finer in the sense

that each stratum in [6] is a union of prime submanifolds in our decomposition. In

particular, our decomposition being a stratification as in definition 3.4.11 implies their

decomposition is a stratification. And to compute higher cohomology of Jopen and

generalize Proposition 3.4.7, we needs this decomposition of Jω.

Further, note that an arbitrary set C ⊂ S<0
ω ,

C = {A1, · · · , Ai, · · · , An|Ai ·Aj ≥ 0 if i 6= j}

dose not necessarily define a nonempty submanifold JC .

Lemma 3.1.8. There is an action of Symph on each prime subset defined as above.

Proof. This simply follows from the fact that Symph acting on Jω preserves the class

of J-holomorphic curve.

We assume the following for the symplectic manifold (X,ω):

Condiction 3.1.9. If A is a homology class in H2(X;Z) with negative self-intersection,

which is represented by a simple J−holomorphic map u : CP 1 →M for some tamed J ,

then u is an embedding.
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And by [56] Proposition 4.2, we have

Lemma 3.1.10. Condition 3.1.9 holds true for S2 × S2#kCP 2, 0 ≤ k < 8.

Note that under this assumption, S<0
ω is the same as the set of homology classes

with negative self-intersection and having a simple rational pseudo-holomorphic repre-

sentative.

Lemma 3.1.11. Assume condition 3.1.9. Then JC ∩JC′ 6= ∅ only if we can find subset

Cdeg = {A1, A2, · · · , An} ⊂ C, such that C \ Cdeg ⊂ C′; and a corresponding subset

C′bubble = {A1
1 · · ·A1

j1 , A
2
1 · · ·A2

j2 , · · · , A
n
1 · · ·Anjn} ⊂ C

′,

such that there are simultaneous decompositions of homology classes:

Ai =
∑
ji

αiA
i
ji +

∑
ki

βiA
i
ki
, αi, βi ≥ 0, (3.1)

where Aiji ∈ S
<0
ω and Aikis are square non-negative classes which has a simple J-

holomorphic representative.

Proof. In definition 3.1.6, for a given Ai ∈ C, we use Ci to denote the embedded

J−holomorphic sphere for J ∈ JC . And we give a description of taking closure of

JC in terms of C: Suppose JC and JC′ are two prime subsets, JC ∩ JC′ 6= ∅.
Then there is a convergent sequence of {Jn} ⊂ JC such that {Jn} → J0 ∈ JC′ . For

J0, take all the elements in C that are not irreducibly J0−holomorphic, and denote the

subset by Cdeg = {A1, A2, · · · , An}. It follows that C \ Cdeg ⊂ C′. For the collection of

cusp curves for Cdeg, we take their irreducible component with negative self-intersection.

C′bubble = {A1
1 · · ·A1

j1 , A
2
1 · · ·A2

j2 , · · · , A
n
1 · · ·Anjn} ⊂ C

′,

Because J0 ∈ JC′ , by Condition 3.1.9, their homology classes must belong to C′. And

Gromov compactness theorem gives us the desired homology decompositions:

Ai =
∑
ji

αiA
i
ji +

∑
ki

βiA
i
ki
, αi, βi ≥ 0
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Lemma 3.1.12. Assuming Condition 3.1.9. If C $ C′, then J C′ ∩ JC = ∅.

Proof. We argue by contradiction. Suppose there exists some J ∈ J C′ ∩ JC . It follows

from equation (3.1) that for some A ∈ C′ \ C there is a decomposition of homology class

A =
∑
α

rα[Cα] +
∑
β

rβ[Cβ],

where each Cβ is a simple J−holomorphic curve with non-negative self-intersection, and

each Cβ is a simple J−holomorphic curve with negative self-intersection.

By Condition 3.1.9, we have [Cα] ∈ C. Therefore A, [Cα] ∈ C′, which implies

A · [Cα] ≥ 0.

We claim that A · [Cβ] ≥ 0 for each β as well. First of all, since Cα’s and Cβ’s

are simple J−holomorphic curves, by positivity of intersection, they pair each other

non-negatively. Moreover, for each β, [Cβ] · [Cβ] ≥ 0. Now the claim A · [Cβ] ≥ 0 follows

from pairing [Cβ] with the equation above.

Finally, pairing the equation with A. The left-hand side is negative, while the right-

hand side is non-negative. This is a contradiction and hence J C′ ∩ JC = ∅.

Hence we verify the prime subsets in Definition 3.1.6 are actually submanifolds:

Proposition 3.1.13. If (X,ω) is a 4-dimensional symplectic manifold, assuming Con-

dition 3.1.9, we verify that prime submanifold is well defined. Further, cod(JC) =

codC =
∑

Ci∈C codCi.

Proof. Empty set is a submanifold of Jω, and we then assume that JC is non-empty.

First note that JC is a subset of UC , which is a submanifold of Jω whose codimension

is d =
∑

i∈I codCi by Proposition 3.1.5. Then we look at UC \ JC . UC is a disjoint

union of JSi where each Si is a curve set which contains C as a proper subset. And the

union of these JSis is relatively closed in UC by lemma 3.1.12 And hence JC is itself a

submanifold of codimension d =
∑

i∈I codCi .

And we address a special case of Proposition 3.1.13:

Lemma 3.1.14. Let X be any symplectic 4 manifold with given symplectic form ω, for

any K − nef class A ∈ S≤−2ω with A2 = k the set JA where A is the only K-nef curve

in the label set is a codimension 2k − 2 stratum.



33

Remark 3.1.15. Notice that to label the prime submanifolds using subsets of S<0
ω

spherical classes is equivalent to labeling them using S≤−2ω , under a certain assumption,

see the next lemma. And we call the subset of S≤−2ω whose elements intersecting pairwise

non-negative an admissible subset. By the adjunction formula, any class in S≤−2ω is

K-nef.

Also note that not any admissible subset defines a non-empty prime submanifold,

for example, the class of a single -4 curve in a rational surface defines an admissible

subset whose prime submanifold is empty.

This is because of the lemma below:

Lemma 3.1.16. If Condition 3.1.9 holds, C is completely determined by its subset of

K-nef curves and by positivity of intersection.

Proof. For any J , the −1 class A must have a J−holomorphic representative. This

means either A has an embedded J−holomorphic sphere representative or A is repre-

sented by a cusp curve. In the latter case we look at the homology class of this cusp

curve:

A =
∑
α

rα[Cα] +
∑
β

rβ[Cβ] +
∑
γ

rγ [Cγ ].

By Condition 3.1.9, we have the negative self-intersecting classes [Cα], [Cβ] ∈ C, where

[Cα]2 ≤ −2, [Cβ]2 = −1. [Cγ ]’s are symplectic sphere classes with non-negative self-

intersection. We now show if A · [Cα] is nonnegative for any[Cα], then there cannot

be homology decomposition A =
∑

α rα[Cα] +
∑

β rβ[Cβ] : If A pair any of [Cα] is

nonnegative, we multiply
∑

γ [Cγ ] on both sides of the decomposition, it is clear that

A ·
∑

γ [Cγ ] is positive. Also, A ·
∑

β[Cβ] is nonnegative for all [Cβ] that are -1 classes

having simultaneously holomorphic representatives a generic J . we compute the product

with A on both sides of the decomposition equation: the left-hand side is A2 < 0 and

the right-hand side by positivity of intersection is nonnegative. This is a contradiction

and hence if A pair any of [Cα] is nonnegative, A has an embedded J−holomorphic

representative.
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3.2 Constraints on simple J−holomorphic curves for a

reduced form

We make the following elementary but crucial observation under the assumption n ≤ 4:

for a reduced form,
n∑
k=1

(ak)
2 ≤ 1, if n ≤ 4. (3.2)

If we consider the extreme value of the function
∑n

k=1(ak)
2 under the constrain given

by the reduced condition 2.5, ai ∈ [0, 1], ai + aj ≤ 1, then the extreme value can only

appear at (1, 0, · · · , 0) or (12 ,
1
2 , · · · ,

1
2) meaning that

∑n
i=1(ai)

2 ≤ max(1, n/4) and

given n ≤ 4,
∑n

k=1(ak)
2 ≤ 1.

3.2.1 The key lemma

Lemma 3.2.1. Suppose X = S2×S2#nCP 2, n ≤ 4, and ω is a reduced symplectic form

in the class µB+F−
∑n

i=1 aiEi as in Lemma 2.1.4. If A = pB+qF−
∑
riEi ∈ H2(X;Z)

is a class with a simple connected J-holomorphic representative for some ω−tamed J ,

then p ≥ 0.

And if p = 0, then q = 0 or 1.

If p = 1, then ri ∈ {0, 1}.
If p > 1, then q ≥ 1.

Proof. We start by stating three inequalities: area, adjunction, ri integer.

The area of the curve class A is positive and hence

ω(A) = pµ+ q −
∑

airi > 0. (3.3)

Since ω is reduced, Kω = −2B − 2F + E1 + · · ·En is the canonical class, we have

the following adjunction inequality for simple J−holomorphic curves:

0 ≤ 2gω(A) := A ·A+K ·A+ 2 = 2(p− 1)(q − 1)−
n∑
i=1

ri(ri − 1). (3.4)

In many cases we will estimate the sum −
∑n

i=1 ri(ri−1). Since each ri is an integer,
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it is easy to see that

−
n∑
i=1

ri(ri − 1) ≤ 0, (3.5)

and −
∑n

i=1 ri(ri − 1) = 0 if and only if ri = 0 or 1 for each i.

In particular, if p = 1, then −
∑n

i=1 ri(ri − 1) = 2g(A) ≥ 0. It follows from 3.5 that

ri(ri − 1) has to be 0 and hence ri ∈ {0, 1}.
And if we assume that p > 1 and q ≤ 0, then −

∑n
i=1 ri(ri − 1) = 2g(A) − 2(p −

1)(q − 1) ≥ 0− 2(p− 1)(q − 1) > 0. This is impossible. Therefore q ≥ 1 if p > 1.

Now let us assume p ≤ 0 and we divide into three cases:

(i) p < 0, q ≥ 1, (ii) p < 0, q ≤ 0, (iii) p = 0.

Case (i). p < 0 and q ≥ 1.

We show this case is impossible. Because p ≤ −1, the adjunction inequality 3.4

implies that

0 ≥ −2gω(A) ≥ 4(q − 1) +
n∑
i=1

ri(ri − 1) ≥ (q − 1) +
n∑
i=1

ri(ri − 1).

Applying the area equation 3.3, we have

(q − 1) +

n∑
i=1

ri(ri − 1) > (

n∑
i=1

airi − µp− 1) +

n∑
i=1

ri(ri − 1).

Since −µp− 1 ≥ 0,

(
n∑
i=1

airi − µp− 1) +
n∑
i=1

ri(ri − 1) ≥ (
n∑
i=1

airi) +
n∑
i=1

ri(ri − 1) =
n∑
i=1

ri(ri − 1 + ai).

For any integer ri we have ri(ri−1 +ai) ≥ 0, which is because ri(ri−1 +ai) ≥ 0 except

on interval ri ∈ [0, 1 − ai] and 1 − ai ∈ [0, 1] since the form is reduced. And therefore

we would have −2gω(A) > 0, which is a contradiction.

Case (ii). p < 0, q ≤ 0

We show this case is also impossible. This will follow from the following estimate,
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under a slightly general assumption:

0 ≤ 2gω(A) ≤ 1 + |p|+ |q| − p2 − q2, if p ≤ 0, q ≤ 0. (3.6)

Before proving this inequality, we note that a direct consequence of this inequality is that

it is impossible to have p ≤ −2, q ≤ 0, or p ≤ 0, q ≤ −2: If |p| > 1, |p|+ |q|+1−(p2+q2)

is clearly negative since q2 ≥ |q|, p2 > |p|+ 1; it is the same if |q| > 1.

So the inequality 3.6 leaves only two cases to analyze: p = q = −1, or p = −1, q = 0.

• p = −1 and q = 0

In this case, we have 2g = 4 −
∑
ri(ri − 1) so

∑u
k=1 r

2
k −

∑u
k=1 rk ≤ 4. Also by

the area inequality 3.3,
∑u

k=1 rk < p+ q = −1, and hence
∑u

k=1 rk ≤ −1. It is easy to

see that {rk} = {−1} or {−1,−1}. But these possibilities are excluded by the reduced

condition ai + aj ≤ 1 ≤ µ for any pair i, j and the area inequality.

• p = q = −1

In this case, we have 2g = 8 −
∑
ri(ri − 1) so

∑u
k=1 r

2
k −

∑u
k=1 rk ≤ 8. Also by

the area inequality 3.3,
∑u

k=1 rk < p+ q = −2, and hence
∑u

k=1 rk ≤ −2. It is easy to

see that {rk} = {−1,−1,−1}, {−1,−1,−1,−1} or {−1,−2}. Again these possibilities

are excluded by the reduced condition ai + aj ≤ 1 ≤ µ for any pair i, j and the area

inequality.

Now we set out to prove the inequality 3.6. In order to estimate −
∑n

i=1 ri(ri − 1)

we rewrite the sum
n∑
i=1

ri =
u∑
k=1

rk +
n∑

l=u+1

rl, (3.7)

where each rk is negative and each rl is non-negative.

Since p ≤ 0, q ≤ 0, the area inequality 3.3 takes the following form:

−
∑

airi > (|p|+ |q|) ≥ 1 + (|p|+ |q|). (3.8)

Note that there exists at least one negative ri term, ie. u ≥ 1 in 3.7. An important

consequence is

u∑
k=1

akrk ≤
n∑
i=1

airi < 0, (
u∑
k=1

akrk)
2 ≥ (

n∑
i=1

airi)
2 (3.9)
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We first observe that, by the Cauchy-Schwarz inequality and 3.2, we have

(

u∑
k=1

akrk)
2 ≤

u∑
k=1

(rk)
2 ×

u∑
k=1

(ak)
2 ≤

u∑
k=1

(rk)
2. (3.10)

Then we do the estimate:

n∑
i=1

ri(ri − 1) =
n∑
i=1

r2i −
n∑
i=1

ri =
u∑
k=1

r2k −
u∑
k=1

rk + (
n∑

l=u+1

r2l −
n∑

l=u+1

rl)

≥
u∑
k=1

r2k −
u∑
k=1

rk (since x2 − x ≥ 0 for any integer)

≥ (
u∑
k=1

akrk)
2 −

u∑
k=1

akrk (follows from the two inequalities: (3.11)

−
∑u

k=1 rk > −
∑u

k=1 akrk and
∑u

k=1 r
2
k ≥ (

∑u
k=1 akrk)

2)

≥ (
n∑
i=1

airi)
2 −

n∑
i=1

airi ( is crucial and it comes from 3.9)

> |p|+ |q|+ (|p|+ |q|)2.

Because
∑n

i=1 ri(ri − 1) is an integer, we actually have

n∑
i=1

ri(ri − 1) ≥ 1 + |p|+ |q|+ (|p|+ |q|)2.

Now the inequality 3.6 follows from the inequality 3.11 and the adjunction 3.4:

2g(A) = 2pq − 2(p+ q) + 2− [

n∑
i=1

(ri)
2 −

n∑
i=1

(ri)] ≤ |p|+ |q|+ 1− (p2 + q2).

Case (iii). p = 0.

In this case the adjunction is of the form −2(q − 1) −
∑n

i=1 ri(ri − 1) ≥ 0. Since

−
∑n

i=1 ri(ri − 1) ≤ 0 we must have q ≤ 1.

If p = 0, q ≤ 0, then we can apply the inequality 3.6 and conclude that q = 0.

In conclusion, we must have q = 0 or 1 if p = 0.
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3.3 Negative square classes and their decompositions

For X = S2 × S2#kCP 2, k ≥ 0, with basis B,F,E1, · · · , Ek ∈ H2(X,Z) and a given

symplectic form ω such that ω(B) = µ ≥ 1, ω(F ) = 1, ω(Ei) = ai, there are three

possible K-nef classes appear in the label set of the prime submanifolds:

• E-class E : integer combination of Ei;

• F-class F : integer combination of F and Ei where coefficient of F is nonzero;

• B-class B: integer combination where coefficient of B is nonzero.

And in the following proposition list all possible negative sphere in the above three sets

for number of blow up points k ≤ 4:

Proposition 3.3.1. Let X = S2 × S2#nCP 2, n ≤ 4 with a reduced symplectic form.

Suppose a class A = pB+qF−
∑
riEi ∈ H2(X;Z) has a simple J-holomorphic spherical

representative such that J is tamed by ω. Then p = 0, 1. And we can further classify

spherical classes with negative square as follows:

B = {B − kF −
∑

riEi, k ≥ −1, ri ∈ {0, 1}};

F = {F −
∑

riEi, ri ∈ {0, 1}};

E = {Ej −
∑

riEi, j < i, ri ∈ {0, 1}}.

Proof. • p ≥ 2

In this case q ≥ 1 by Lemma 3.2.1. We need to exclude this case using the fact that

gω(A) = 0 and A2 < 0. Observe that by the adjunction we have

n∑
i=1

ri(ri − 1) = 2(p− 1)(q − 1). (3.12)

Since gω(A) = 0 and 2gω(A)−2 = Kω ·A+A2, we have −1 ≤ Kω ·A =
∑
ri−2p−2q,

namely, ∑
ri = 2p+ 2q + k, k ≥ −1. (3.13)

Now if p > 1, q > 1, since n ≤ 4, by Cauchy Schwartz and 3.13,

∑
r2i ≥ [

∑
ri]

2/4 ≥ (2p+ 2q + k)2/4. (3.14)
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It follows from 3.13 and 3.14, p ≥ 2, q ≥ 1, k ≥ −1 that

∑
r2i −

∑
ri ≥ (2p+ 2q + k)2/4− (2p+ 2q + k)

= (p+ q)2 + (p+ q)k +
k2

4
− k − 2(p+ q)

= [2pq + 2− 2(p+ q)] + (p2 + pk − 2) + q2 +
k2

4
+ (qk − k)

> 2(p− 1)(q − 1).

Notice the last 3 terms are all non-negative and cannot be zero simultaneously.

Hence a spherical class has p = 0, 1.

• p = 1.

If p = 1, then ri = 0 or 1 as shown in Lemma 3.2.1. So

A = B + qF −
∑

riEi, ri ∈ {0, 1}.

And the condition A2 < 0 and n ≤ 4 implies that q ≤ 1.

• p = 0.

In this case, we have shown that q = 0 or 1 in Lemma 3.2.1.

If p = 0, q = 0, the adjunction inequality 3.4 is of the form 2−
∑n

i=1 ri(ri − 1) ≥ 0.

Let x be an integer. Notice that x(x − 1) ≥ 0, and x(x − 1) = 0 if x = 0 or 1. Notice

also that if x(x − 1) > 0 then x(x − 1) ≥ 2, and x(x − 1) = 2 if x = 2 or x = −1. We

see there is at most one j such that rj 6= 0 or 6= 1, and for this j, rj = −1 or 2. By

considering the area of such a class, we must have rj = −1, and j < i for any ri = 1.

Therefore, in this case, A can only be of the form

Ej −
∑

riEi, i > j, ri ∈ {0, 1}.

We are left with q = 1. In this case, the adjunction inequality 3.4 is of the form

−
∑n

i=1 ri(ri − 1) ≥ 0. So we must have ri = 0 or 1. Namely,

A = F −
∑

riEi, ri ∈ {0, 1}.
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Remark 3.3.2. A similar analysis leads to the classification of square zero classes. for

X = S2 × S2#nCP 2, n ≤ 4 with a reduced symplectic form. Suppose a class A has a

simple J-holomorphic spherical representative such that J is tamed by ω. Then A is

one of the following classes:

2B + F − E1 − E2 − E3 − E4, B + 2F − E1 − E2 − E3 − E4, B + F − Ei − Ej , B, F.

In particular, A is the class of an embedded symplectic sphere. We do not need this

fact in the paper.

Here is an important consequence of Lemma 3.2.1 and Proposition 3.3.1.

Proposition 3.3.3. Let X = S2×S2#kCP 2, k ≤ 4 with an arbitrary symplectic form.

Let A be a K-nef class which has an embedded representative for some J , Then for any

simple J ′−holomorphic representative of A for some J ′, there is no component whose

class has a positive square. Moreover, if the symplectic form is reduced, • any square

zero class in the decomposition is of the form B or kF, k ∈ Z+,

• any negative square class is from the list in Proposition 3.3.1, in particular, a class

of an embedded symplectic sphere.

Proof. Without loss of generality, we can assume the symplectic form is reduced.

Let C = pB + qF −
∑

i riEi be a K-nef class on the left hand side of (3.1). Then

by Lemma 3.2.1, p = 0 or p = 1, and if p = 1 then q ≤ 1. We argue by contradiction to

show that there’s no square positive class.

Suppose on the right hand side there is a square positive class C ′ = p′B + q′F −∑
i r
′
iEi. Denote the decomposition by

C = C ′ + C(B,F,Ek).

Here C(B,F,Ek) is a sum of curves that have simple J-holomorphic representative.

Let us first inspect the B coefficients.By Lemma 3.2.1, the B coefficient of any class

in the decomposition is non-negative. This implies that p′ ≥ 0 and p− p′ ≥ 0. Since C ′

is assumed to have positive square, p′ 6= 0. Since p = 0 or 1, we must have both p′ = 1
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and p = 1. And because the B coefficient of each class is non-negative, we conclude

that the B coefficient of each class in C(B,F,Ek) is 0.

Now let us inspect the F coefficients. For the class C ′, since p′q′ ≥ 1 we have q′ ≥ 1.

For any class in C(B,F,Ek), since the B coefficient is zero, by Lemma 3.2.1, the F

coefficient is 0 or 1. Hence q ≥ q′ ≥ 1, and by Proposition 3.3.1, q ≤ 1. Hence we

conclude that both q = 1 and q′ = 1.

And this means C(B,F,Ek) is a sum of curves where each of them having 0 as the

coefficients on B and F . In addition, because C2 ≤ −2, C = B+F −E1−E2−E3−E4.

Recall that by Lemma 3.2.1, since C ′ = B + F −
∑

i r
′
iEi have coefficient ‘1’ on B, we

have r′i ∈ {0, 1}.
This means C(B,F,Ek) = −E1 − E2 − E3 − E4 − Ei +

∑
i r
′
iEi, having coefficient

0 or −1 on each Ei, and hence it has negative symplectic area. This has a contradiction

against the fact C(B,F,Ek) is the sum of J-holomorphic homology classes. Hence there

is no positive squared curve in decomposition (3.1) of a K-nef curve.

Next, we analyze the possible square 0 classes in the decomposition. From the

analysis above, we only need to deal with the case that either p′ = 0 or q′ = 0.

For the case p′ = 0, the only square zero classes can be kF, k ∈ Z+. And for the

case q′ = 0, the only square zero class can be B.

3.4 Codimension 2 prime submanifolds

3.4.1 Level 2 stratification

The next theorem holds for any symplectic rational 4 manifold having Euler number

χ(X) ≤ 8 with a given reduced symplectic form:

Theorem 3.4.1. For a symplectic rational 4 manifold having Euler number χ(X) ≤ 8

and any symplectic form, X4 = ∪cod(C)≥4JC and X2 = ∪cod(C)≥2JC , are closed subsets in

X0 = Jω. Consequently,

(i). X0 −X4 is a manifold.

(ii). X2 −X4 is closed in X0 −X4.

(iii). X2 −X4 is a manifold.

(iv). X2 −X4 is a submanifold of X0 −X4.
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Proof. We first show that X2 is closed in X0, namely, X2 ∩ (X0 −X2) = ∅.
We will argue by contradiction. For each J ∈ X2 there is at least one embedded

J−holomorphic sphere with square at most −2. And by Lemma 3.1.10, Condition 3.1.9

applies here. Hence for each J ′ ∈ X0 − X2, every simple J ′−holomorphic sphere has

square at least −1.

Thus, if X2 ∩ (X0 − X2) 6= ∅, then by Lemma 3.1.11 there is a square at most −2

symplectic sphere C whose class [C] admits a decomposition as in equation (3.1), with

no class having square less than −1. Moreover, by Proposition 3.3.3, the decompositions

has the form

[C] =
∑

aiF +
∑
j

bjDj + rB,

where ai, bj are non-negative integers, r ∈ {0, 1}, and Dj ∈ S−1ω . By pairing with

Kω on both sides. The left hand side is [C] · Kω ≥ 0. And the right hand side is∑
aiF ·Kω +

∑
j bjDi ·Kω + rB ·Kω. Since Di ·Kω = −1, F ·Kω = B ·Kω = −2. There

is a contradiction since the righthand side is strictly negative.

We next show that X4 is closed in X, namely, X4 ∩ (X0 − X4) = ∅. Since X4 ⊂ X2

and X2 is closed in X, it suffices to show that X4 is closed in X2.

For each J ∈ X4 there is either one embedded J−holomorphic sphere with square

at most −3, or there are at least two embedded J−holomorphic sphere with square

−2. And by Lemma 3.1.10, Condition 3.1.9 holds here and for each J ′ ∈ X2 −X4 every

simple J ′−holomorphic sphere has square at least −2.

Suppose X4 ∩ (X2 −X4) 6= ∅. Then

1) either there is a curve class C̄ ∈ S<−2 such that C̄ =
∑
ciC̄i with C̄i ∈ S≥−2;

2) or there is a curve class C̄ ∈ S−2 such that C̄ = C̄ ′ +
∑
ciC̄i with C̄i ∈ S−2 and

∅ 6= {C̄i} ⊂ S>−2.

For the both cases, by Proposition 3.3.3, the decomposition can only have four types

of classes: the zero class B, kF , Dj ∈ S−1ω , Gk ∈ S−2ω . Since either a 6= 0 or some bj 6= 0,

we have the contradiction 0 = [C̃]·Kω = rB ·Kω+
∑
aF ·Kω+

∑
j bjDi ·Kω+ckGk ·Kω <

0. A contradiction.

Next let us establish the claims (i)-(iv).
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(i). X0 − X4 is a manifold. This statement is true since X4 is closed in X0 and X0

is a manifold. Similarly, X0 − X2 is a manifold since X2 is also closed in X0. And both

X0 −X4 and X0 −X2 are open submanifolds of X0.

(ii). X2−X4 is closed in X0−X4. This follows from the fact that X2 is closed in X0.

(iii). X2 − X4 is a manifold. This statement follows from the fact that X2 − X4 is

a submanifold of X0. This latter fact follows from the fact that X2 − X4 is the disjoint

union of cod 2 prime sets JA over S−2ω , and Lemma 3.1.13.

(iv). X2−X4 is a closed submanifold of X0−X4. Since X0−X4 is an open submanifold

of X0, X2 −X4 is also a submanifold of X0 −X4.

Hence this proves that ∅ = X5 ⊂ X4(= X3) ⊂ X2(= X1) ⊂ X0 = Jω, is a level 2

stratification.

3.4.2 Enumerating the components by −2 symplectic sphere classes

We use the following lemma as stated in [29] to further describe each JA:

Lemma 3.4.2. For a rational manifold X = S2 × S2#kCP 2, k ≥ 0, the group Symph

acts transitively on the space of homologous -2 symplectic spheres.

Proof. Here we give a proof follows steps sketched in in [33] and [9]: Without loss of

generality, we can do base change to make a symplectic sphere Si in the homology class

[Si] = B − F. For each pair (X,Si), by [40], there is a set Ci of disjoint (-1) symplectic

spheres C li for l = 1, · · · , k such that

[C li ] = El, for l = 1, · · · k.

Blowing down the set {C1
i , · · ·Cki } separately, results in (Xi, S̃i,Bi) where Xi is a sym-

plectic S2×S2 with equal symplectic areas admitting from the original symplectic form

of X on factor B and F , S̃i a symplectic sphere in Xi, and Bi = {B2
i , · · · , Bk

i } is a

symplectic ball packing in Xi \ S̃i corresponding to Ci. For any two pairs, since the sym-

plectic forms are homologous, by [23], there is a symplecotomorphism Φ from (X1, S̃1)

to (X2, S̃2), such that for fixed l, V ol(Φ(Bl
1)) = V ol(Bl

2). Then according to [3], we

can choose this Φ such that the two symplectic spheres are isotopic, i.e. Φ(S̃1) = S̃2.
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Then apply Theorem 1.1 in [9], there is a compactly supported Hamiltonian isotopy ι

of (X2, S̃2) such that the symplectic ball packing Φ(B1)) and B2 is connected by ι in

(X2, S̃2). Then ι ◦Φ is a symplecotomorphism between the tuples (Xi, S̃i,Bi) and hence

blowing up induces a symplecotomorphism ψ : (X1, S̃1,B1)→ (X2, S̃2,B2). Further note

that ψ preserve homology classes B,F,E1, E2, · · · , Ek and hence ψ ∈ Symph(X,ω).

Hence we have the following corollary about codimension 2 stratum in the stratifi-

cation of Jω:

Corollary 3.4.3. If the group Symph is itself connected, which holds true for X =

S2 × S2#kCP 2, k = 0, 1, 2, 3 as in Theorem 1.1 in [29], then homologous symplectic -2

spheres are Hamiltonian isotopic. This means the stratum J{A} is connected if A is a

-2 symplectic sphere.

Remark 3.4.4. Here we list the set R+
k+1 as defined in Remark 2.1.11 for X = S2 ×

S2#kCP 2, k ≤ 4, which is the set of all possible homology classes of symplectic or

Lagrangian square (-2) spheres for some reduced symplectic form:

• S2 × S2: R+
1 = {B − F}.

• S2 × S2#CP 2 : R+
2 = {B − F}.

• S2 × S2#2CP 2 : R+
3 = {B − F,E1 − E2, B − E1 − E2, F − E1 − E2}.

• S2×S2#3CP 2 :R+
4 = {B−Ei−Ej , F −Ei−Ej , where i > j, i, j ∈ {1, 2, 3}, B−

F}.

• S2×S2#4CP 2: R+
5 = {B+F −E1−E2−E3−E4, B−Ei−Ej , F −Ei−Ej , Ei−

Ej , where i > j, i, j ∈ {1, 2, 3, 4}, B − F}.

In particular, for a rational manifold X = S2 × S2#kCP 2, n ≤ 4 with a reduced

form, S−2ω is a subset of classes listed above, as described in section 2.1.

Remark 3.4.5. The following observation will be used in Lemma 4.3.1: for a symplectic

rational 4 manifold of Euler number χ(X) ≤ 7, any symplectic -2 sphere S is an edge

of a toric moment polytope. Consequently, there is a semi-free circle action having S as

a component of the fixed locus.
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Relative Alexander duality for regular Fréchet stratification

We have the following relative version of Alexander duality proved in [11]:

Theorem 3.4.6. Let X be a Hausdorff space, Z ⊂ Y a closed subset of X such that

X − Z,Y − Z are manifolds modeled by topological linear spaces. Suppose Y − Z is a

closed submanifold of X − Z of codimension p, then we say (Y,Z) is a closed relative

submanifold of (X ,Z) of codimension p.

And we have the isomorphism H i(X−Z,X−Y) = H i−p(Y−Z) for a given coefficient

sheaf.

Further, we have the following sequence

· · · → H i−1(X − Y)→ H i−p(Y − Z)→ H i(X − Z)→ H i(X − Y)→ · · ·

This duality in Theorem 3.4.6 together with Lemma 3.1.13 and Theorem 3.4.1 gives

the following:

Corollary 3.4.7. When the decomposition Jω is a stratification at the first two level

as in Theorem 3.4.1 with top stratum Jopen, then H1(Jopen) =
⊕

Ai∈S−2
ω

H0(JAi).

Proof. In Theorem 3.4.1, let X0 = X ,X2 = Y,X4 = Z. It is easy to check the condition

holds in Theorem 3.4.6. The the conclusion easily follows from the sequence in Theorem

3.4.6.

In the next lemma, we give a characterization of Jopen using a configuration C of -1

spheres:

Lemma 3.4.8. Let X be S2 × S2#kCP 2, k ≤ 4 with a reduced symplectic form and

configuration C of exceptional spheres containing there is a subset, of cardinality ≤
k + 1(see remark 3.4.9), such that UC = Jopen. And we give a proper choice of subsets

as follows for later use:

• S2 × S2#CP 2, C = {B − E},

• S2 × S2#2CP 2, C = {E1, B − E1, F − E1},
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• S2 × S2#3CP 2, C = {F − E1, E2, B − E1, B + F − E1 − E2 − E3},

• S2 × S2#4CP 2, C = {B + F − E2 − E3 − E4, B − E1, F − E1, E2, E3},

Proof. By [34], for any S2 × S2#nCP 2, Jopen is characterized by the existence of all

exceptional spheres and the absences of embedded negative square spheres. Since in

the configuration C we have only −1 sphere components, for each J ∈ Jopen, there is a

unique J−holomorphic configuration in C. Then we can define a natural map Jopen → C,
sending the almost complex structure to the unique J−holomorphic configuration in C.
We can check that for each given small rational manifold as listed above, any negative

curve as in Lemma 3.3.1 intersects at least one curve in the configuration negatively:

• S2 × S2#kCP 2, k = 1, 2, it is easy to check the curves with square -2 in section

3.4.2.

And any curve with square less than -2 can be written as B−qF −riEi, q ≥ 1; i ≤
k, ri ∈ {0, 1}. And [B − qF − riEi] · [B − E1] = −q − r1 < 0.

• S2 × S2#3CP 2, any curve with square -2 as listed in in section 3.4.2 is easy to

check.

Any class in F , E with square less than -2 can be F−E1−E2−E3 or E1−E2−E3,

and each of them pair with B + F − E1 − E2 − E3 is negative. And any class

in B with square less than -2 can be written as either B − E1 − E2 − E3 or

B−kF−riEi, k ≥ 1, ri ∈ {0, 1}. And [B−E1−E2−E3]·[B+F−E1−E2−E3] < 0;

[B − kF − riEi] · [B − E1] = −k − r1 < 0.

• And we can check all the curves with square -2 in S2× S2#4CP 2 pairing at least

one of {B + F − E2 − E3 − E4, B − E1, F − E1, E2, E3} negatively.

Additionally, any class in F , E with square less than -2 is one of the following

Ei−Ej−Ek, F−Ei−Ej−Ek, i > j > k ∈ {1, 2, 3, 4}, E1−E2−E3−E4, F−E1−E2−
E3−E4; and each of them pair B+F−E2−E3−E4 negatively. Any class in B with

square less than -2 can be written as either B−Ei−Ej−Ek, i > j > k ∈ {1, 2, 3, 4},
or B−kF−riEi, k ≥ 1, ri ∈ {0, 1}. And [B−Ei−Ej−Ek]·[B+F−E2−E3−E4] < 0;

[B − kF − riEi] · [B − E1] = −k − r1 < 0.
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Therefore any sphere class with square less than -1 can not have simultaneous

J−holomorphic representative with the set C.

Remarks

Remark 3.4.9. In the above Lemma 3.4.8, the subsets has the minimal cardinality,

but they are in general not unique. This means there are other choices of subsets S of

-1 spheres such that JS = Jopen, having larger cardinality, but S does not necessarily

contain the subsets we list.

And note that in H,Ei basis, the minimal subsets we choose can be written down in

the following way: First the -1 curve with maximal area Am. And if there’s no -1 curve

A = nH −
∑
aiEi such that Am · A ≥ 0, then take the set to be {Am, E1, · · · , Ek1};

otherwise we take Am and another Ap = npH−
∑
piEi such that Am ·Ap being largest,

then we take the set to be {Am, E1, · · · , Êi · · · , Êj · · · , Ek}, where Ei, Ei are the minimal

area class pairing Am, Ap positive respectively.

And one can do a base change for the sets in Lemma 3.4.8 to obtain the following,

which agrees with the above method:

• CP 2#2CP 2, C = {E1}.

• CP 2#3CP 2, C = {E1, E2, H − E2 − E3}.

• CP 2#4CP 2,C = {H − E1 − E2, H − E3 − E4, E1, E3, }.

• CP 2#5CP 2, C = {2H − E1 − E2 − E3 − E4 − E5, E1, E2, E3, E4}.

Remark 3.4.10. In a separate paper [28] we will prove a general result. Let X =

CP 2#kCP 2 with arbitrary ω. If k ≤ 8, then each prime subset JC is a submanifold.

Moreover, if k ≤ 5, then X2i is relatively closed in the union ∪j≥iX2j .

Therefore, for X = CP 2#kCP 2, k ≤ 5 with arbitrary ω, this filtration of Jω fits

into the following notion of stratification in ∞-dimension (For finite dimension, see

eg. [17]):

Definition 3.4.11. For an ∞-dimensional real Fréchet manifold X, a finite filtration

of X is called an even stratification if it is a sequence of closed subspaces

∅ = X2n+2 ⊂ X2n ⊂ X2n−2 . . . ⊂ X2 ⊂ X0 = X ,
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where X2i r X2i+2 is a submanifold of real codimension 2i.

Remark 3.4.12. An absolute version of Alexander duality in [11] was applied by Abreu

to detect the topology of Jopen for S2 × S2 with a symplectic form with ratio within

(1, 2) in [1]. In the paper [28] we will establish an Alexander duality for stratifications

as in Definition 3.4.11, generalizing [11]. The following special case can also be applied

to compute the fundamental group of the symplectomorphism group of small rational

4-manifolds.

Theorem 3.4.13. Let X be a contractible paracompact C∞ smooth (in the Graves-

Hildebrandt sense) manifold modeled by a complex Fréchet space. Suppose X is evenly

stratified by {X2i}ni=0 as in Definition 3.4.11 at the first 2 levels. Then we have the

duality on the integral cohomology of X \ X2 and X2 \ X4 at certain level:

H1(X \ X2) ∼= H0(X2 \ X4).



Chapter 4

Symplectic rational 4-manifold

with Euler number less than 8

This chapter is devoted to the study of a rational surface with Euler number less than

8. We provide a uniform approach to prove the connectedness of Torelli SMC and

to compute π1(Symp(X,ω)) when (X,ω) is a rational 4 manifold with Euler number

χ(X) ≤ 7. We will further discuss the full homotopy type of (Symp(X,ω)).

4.1 Strategy

We summarize the strategy using diagram (1.1),

Sympc(U)y
Stab1(C) −−−−→ Stab0(C) −−−−→ Stab(C) −−−−→ Symph(X,ω)y y y

G(C) Symp(C) C0 ' Jopen,

(4.1)

Recall definition 1.2.1 that C is stable full configuration of symplectic spheres.

We then analyze the diagram (1.1) and derive a criterion for the connectedness of

Symph(X,ω) in Corollary 4.2.11.

49
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4.1.1 Groups associated to a configuration

Let C be a configuration in X. We first introduce the groups appearing in (1.1):

Subgroups of Symph(X,ω)

Recall that Symph(X,ω) is the group of symplectomorphisms of (X,ω) which acts

trivially on H∗(X,Z).

• Stab(C) ⊂ Symph(X,ω) is the subgroup of symplectomorphisms fixing C setwise,

but not necessarily pointwise.

• Stab0(C) ⊂ Stab(C) is the subgroup the group fixing C pointwise.

• Stab1(C) ⊂ Stab0(C) is subgroup fixing C pointwise and acting trivially on the

normal bundles of its components.

Sympc(U) for the complement U

Sympc(U) is the group of compactly supported symplectomorphisms of (U, ω|U ),

where U = X \C and the form ω|U is the inherited form on U from X. It is topologised

in this way: let (U, ω) be a non-compact symplectic manifold and let K be the set of

compact subsets of U . For each K ∈ K let SympK(W ) denote the group of symplec-

tomorphisms of U supported in K, with the topology of C∞-convergence. The group

Sympc(U, ω) of compactly-supported symplectomorphisms of (U, ω) is topologised as

the direct limit of SympK(W ) under inclusions.

Symp(C) and G(C) for the configuration C

Given a configuration of embedded symplectic spheres C = C1 ∪ · · · ∪ Cn ⊂ X in a

4-manifold, let I denote the set of intersection points amongst the components. Suppose

that there is no triple intersection amongst components and that all intersections are

transverse. Let ki denote the cardinality of I ∩ Ci, which is the number of intersection

of points on Ci.

The group Symp(C) of symplectomorphisms of C fixing the components of C is the

product
∏n
i=1 Symp(Ci, I ∩ Ci). Here Symp(Ci, I ∩ Ci) denotes the group of symplec-

tomorphisms of Ci fixing the intersection points I ∩ Ci. Since each Ci is a 2−sphere

and Symp(S2) acts transitivity on N−tuples of distinct points in S2, we can write
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Symp(Ci, I ∩ Ci) as Symp(S2, ki). Thus

Symp(C) ∼=
n∏
i=1

Symp(S2, ki) (4.2)

As shown in [13] we have:

Symp(S2, 1) ' S1; Symp(S2, 2) ' S1; Symp(S2, 3) ' ?; (4.3)

where ' means homotopy equivalence. And when k = 1, 2, the S1 on the right can be

taken to be the loop of a Hamiltonian circle action fixing the k points.

The symplectic gauge group G(C) is the product
∏n
i=1 Gki(Ci). Here Gki(Ci) denotes

the group of symplectic gauge transformations of the symplectic normal bundle to

Ci ⊂ X which are equal to the identity at the ki intersection points. Also shown

in [13]:

G0(S2) ' S1; G1(S2) ' ?; Gk(S2) ' Zk−1, k > 1. (4.4)

Since we assume the configuration is connected, each ki ≥ 1. Thus by (4.4), we have

π0(G(C)) = ⊕ni=1π0(Gki(S
2)) = ⊕ni=1Zki−1 (4.5)

It is useful to describe a canonical set of ki generators for Gki(Ci). For each intersection

point y ∈ I ∩ Ci, the evaluation map

evy : Gki(Ci)→ SL(2,R)

is a homotopy fibration with fiber Gki+1(Ci) which is the gauge group fixing one more

point. And hence it induces a map Z = π1(SL(2,R)) → π0(Gki(Ci)). Let gCi(y) ∈
π0(Gki(Ci)) denote the image of 1 ∈ Z.

4.1.2 Choice of the configuration in each case

Now for an arbitrary symplectic form, by Lemma 2.1.4, it is diffeomorphic to a reduced

form. Symplectomorphic symplectic forms have homeomorphic symplectomorphism
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groups. Hence it suffices to list the choice of standard stable configuration C for any

rational 4-manifold with Euler number χ(X) ≤ 7, equipped with a reduced symplectic

form:

• CP 2#2CP 2, C = {E1, E2, H − E1 − E2}.

• CP 2#3CP 2, C = {E1, E2, E3, H − E1 − E2, H − E2 − E3}.

• CP 2#4CP 2, C = {H − E1 − E2, H − E3 − E4, E1, E2, E3, E4}.

For such configuration, we have the following lemma about the weak homotopy type of

C, C0:

Lemma 4.1.1. For CP 2#kCP 2, k = 2, 3, 4, C0 is weakly homotopic to C. Denote JC
the set of almost complex structure that making the configuration C J-holomoprhic, then

C is weakly homotopic to JC .

Proof. The first statement is proved in [24] and [13]. Then we show that Jopen is weakly

homotopic to C. By Lemma 3.4.8, the set of almost complex structures making C ∈ C
J-holomorphic is the set Jopen. In addition, Jopen → C is a surjection and hence a

submersion. And as shown in Proposition 4.8 in [24], this map is a fibration with

contractible fiber; then we have the desired weak homotopy equivalence between Jopen
and C.

And we know from Lemma 3.4.8 that JC = Jopen, because each above configuration

contains a minimal subset as in Lemma 3.4.8.

4.2 Connectedness of the Torelli symplectic mapping class

group

We first focus on the symplectic mapping class group, and show that

Theorem 4.2.1. Symph(X,ω) is connected for X = CP 2#4CP 2 with arbitrary sym-

plectic form ω.
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4.2.1 Reduction to the connectedness of Stab(C)

The aim of this subsection is to show

Proposition 4.2.2. Symph(X,ω) is connected if there is a full, stable, standard con-

figuration C with connected Stab(C).

This is derived from the right end of diagram (1.1) for a full, stable, standard

configuration C, that is, the fibration:

Stab(C)→ Symph(X,ω)→ C0 (4.6)

Recall that C0 is the space of standard configurations having the homology type of

C. We will show (1.1) is a homotopy fibration and C0 is connected.

We first review certain general facts regarding these configurations which are well-

known to experts. By [32], we have the following fact.

Lemma 4.2.3. Let (M,ω) be a symplectic 4-manifold and C a stable configuration

∪iCi. Then there is a path connected Baire subset TD of Jω ×M×d(Ci) such that a pair

(J,Ω) lies in TD if and only if there is a unique embedded J−holomorphic configuration

having the same homological type as C with the i−th component containing Ωi.

Lemma 4.2.4. Assume C is a stable, standard configuration. The space C0 of standard

configurations having the homology type of C is path connected.

Proof. Consider C, the space of configurations as in Definition 1.2.1. By Lemma 4.2.3

we see that the space C is connected. Using a Gompf isotopy argument, it is shown in

[13] that the inclusion ι : C0 → C is a weak homotopy equivalence. Therefore, C0 is also

connected.

With C being full, the following lemma holds:

Lemma 4.2.5. If the stable, standard configuration C is also full, then Symph(X,ω)

acts transitively on C0. In particular, (4.3.1) is a homotopy fibration.

Proof. From Lemma 4.2.4 any C1, C2 ∈ C0 are isotopic through standard configura-

tions. The property that the configurations are symplectically orthogonal where
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they intersect, together with the vanishing of H2(X,C;R), allows us to extend such

an isotopy to a global homologically trivial symplectomorphism of X (by Banyaga’s

symplectic isotopy extension theorem, see [43], Theorem 3.19). So we have shown that

the action of Symph(X,ω) on the connected space C0 is transitive by establishing the

1−dimensional homotopy lifting property of the map Symph(X,ω) → C0. By a finite

dimensional version of this argument (or Theorem A in [47]), we conclude that (4.3.1)

is a homotopy fibration.

Proof of Proposition 4.2.2

Since (4.3.1) is a homotopy fibration by Lemma 4.2.5, we have the associated homo-

topy long exact sequence. Because of the connectedness of C0 as shown in Lemma 4.2.4,

the connectedness of Stab(C) implies the connectedness of Symph(X,ω). Therefore, we

have 4.2.2 as the reduction of our problem.

4.2.2 Reduction to the surjectivity of ψ: π1(Symp(C))→ π0(Stab
0(C))

To investigate the connectedness of Stab(C), considering the action of Stab(C) on C

and the following portion of diagram 1.1 which appeared in [13] and [6]:

Stab0(C)→ Stab(C)→ Symp(C) (4.7)

The following lemma already appeared in [13] and was explained to the authors by J.

D. Evans1. We here include more details for readers’ convenience.

Lemma 4.2.6. This diagram (4.7) is a homotopy fibration when C is a simply-connected

standard configuration.

Proof. First we show Stab(C)→ Symp(C) is surjective.

Recall that at each intersection point between two different components {xij} =

Ci ∩Cj , the two components are symplectically orthogonal to each other in a Darboux

chart containing xij . For convenience of exposition define the level of components as

follows: let C1 be the unique component of level 1, and the level-k components are

defined as those intersects components in level k − 1 but does not belong to any lower

levels. This is well-defined again because of the simply-connectedness assumption.

1Private communications.
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An element in Symp(C) is the composition of Hamiltonian diffeomorphism φi on

each component Ci, because of the simply connectedness of sphere. We start with

endowing C1 with a Hamiltonian function f1 generating φ1. Let C2
i be curves on level

2. Because C2
i intersects C1 ω-orthogonally, we can find a symplectic neighborhood U1

of C1, identified as a neighborhood of zero section of the normal bundle, so that U1∩Ci
consists of finitely many fibers. Pull-back f1 by the projection π of the normal bundle

and multiply a cut-off function ρ(r), ρ(r) = 1, r ≤ ε � 1; ρ(r) = 0, r ≥ 2ε. Here r is

the radius in the fiber direction. Denote by φ̄1 the symplectomorphism generated by

this cut-off. Notice that φ̄1 creates an extra Hamiltonian diffeomorphism εj on each

component Cj of level 2, and we denote φ′j = φj ◦ ε−1j for Cj belonging to level 2.

One proceeds by induction on the level k. Notice one could always choose a Hamil-

tonian function fi on a component Ci on level k which generates φ′i with the property

that fi(xil) = 0. Here Cl is the component of level k− 1 intersecting Ci. We emphasize

this can be done because the component Cl on level k− 1 which intersects Ci is unique

(and that the intersection is a single point) due to the simply connectedness assumption,

and we do not restrict the value on any other intersections of Ci and components of

level k + 1. Therefore we only fix the value of fi at a single point.

One then again use the pull-back on the symplectic neighborhood and cut-off along

the fiber direction to get a Hamiltonian function Hi which generates a diffeomorphism

φ̄i supported on the neighborhood of Ci. We note that d(π∗f1 · ρ(r))|Fx = 0 whenever

f1(x) = 0, where Fx is the normal fiber over the point x ∈ C1. Hence dHi|Cl
= 0 since

fi(xil) = 0 as prescribed earlier, which means action of φ̄i on Cl is trivial. Taking the

composition φ of all these φ̄i
′
s, φ is supported on a neighborhood of C and equals φi

when restricted to Ci.

The transitivity of the action of Stab(C) on Symp(C) follows easily. For any two

maps φ1, φ2 ∈ Symp(C), φ2φ
−1
1 ∈ Symp(C). We can extend φ2φ

−1
1 to Stab(C). Then

this extended φ2φ
−1
1 maps φ1 to φ2.

Now symplectic isotopy theorem (or Theorem A in [47]) for the surjective map

Stab(C)→ Symp(C) proves the diagram (4.7) is a fibration.

Now we can establish the connectedness of Stab(C) under the following assumptions:
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Proposition 4.2.7. Let (X,ω) be a symplectic 4-manifold, and C a simply-connected,

full, stable, standard configuration. If each component of C has no more than 3 in-

tersection points, then the surjectivity of the connecting map ψ: π1(Symp(C)) →
π0(Stab

0(C)) implies the connectedness of Stab(C).

Proof. Since we assume that each component of C has no more than 3 intersection

points, it follows from (4.3) and (4.2) that π0(Symp(C)) = 1.

By Lemma 4.2.6 we have the homotopy long exact sequence associated to (4.7),

· · · → π1(Symp(C))
ψ→ π0(Stab

0(C))→ π0(Stab(C))→ π0(Symp(C))

Then the surjectivity of ψ implies that Stab(C) is connected.

4.2.3 Three types of configurations

Next we investigate when the map ψ: π1(Symp(C))→ π0(Stab
0(C)) is surjective. For

this purpose we observe that an element of Stab0(C) induces an automorphisms of the

normal bundle of C. Thus we further have the following homotopy fibration appeared

in [13] and [6]:

Stab1(C)→ Stab0(C)→ G(C) (4.8)

In particular, there is the associated map ι : π0(Stab
0(C)) → π0(G)(C). Consider the

composition map

ψ̄ = ι ◦ ψ : π1(Symp(C))→ π0(Stab
0(C))→ π0(G(C)).

Notice that π0(G(C)) inherits a group structure from G(C) and ψ̄ is a group homomor-

phism. As shown in [13], ψ̄ can be computed explicitly.

When ki = 3, π1(Symp(S
2, k)) is trivial by (4.3). When ki = 1, 2, Symp(Ci, I ∩Ci)

is homotopic to the loop of a Hamiltonian circle action on Ci fixing the ki points. Denote

such a loop by (φi)t. Observe that (φi)t is a generator of π1(Symp(Ci, I ∩ Ci)) = Z.

Recall that for each component Cj there is a canonical set of generators {gCj (y), y ∈
I ∩ Cj} for Gkj (Cj), introduced at the end of 2.1. The following is Lemma 4.1 in [13]
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Lemma 4.2.8. Suppose Ci is a component with ki = 1, 2. The image of [(φi)t] ∈
π1(Symp(Ci, I ∩ Ci)) under ψ̄ is described as follows.

• if ki = 1 and Cj is the only component intersecting Ci with {x} = Ci ∩ Cj, then

(φi)2π is sent to

gCj (x)

in the factor subgroup π0(Gkj (Cj)) of π0(G(C)).

• if ki = 2 and x ∈ Ci ∩ Cj, y ∈ Ci ∩ Cl, then (φi)2π is sent to

(gCj (x), gCl
(y))

in the factor subgroup π0(Gkj (Cj))× π0(Gkl(Cl)) of π0(G(C)).

Use Lemma 4.2.8 we will show that ψ̄ is surjective for the following configurations.

Definition 4.2.9. Introduce three types of configurations (see Figure 1 for examples).

• (type I) C =
⋃n

1 Ci is called a chain, or a type I configuration, if k1 = kn = 1 and

kj = 2, 2 ≤ j ≤ n− 1.

• (type II) Suppose C =
⋃n

1 Ci is a chain. C ′ = C ∪ Cp is called a type II

configuration if the sphere Cp is attached to Cp at exactly one point for some

p with 2 ≤ p ≤ n− 1.

• (type III) Suppose C ′ = C ∪ Cp is a type II configuration. C ′′ = C ′ ∪ Cq is called

a type III configuration if the sphere Cq is attached to Cq at exactly one point for

some q with 2 ≤ q ≤ n− 1 and q 6= p.

Lemma 4.2.10. ψ̄ is surjective for a type I or II configuration and an isomorphism for

a type III configuration.

Proof. We first prove the surjectivity for a type I configuration C =
⋃n

1 Ci. In this case,

there are n− 1 intersection points x1, ..., xn−1 in total with

I ∩ C1 = {x1}, I ∩ Cn = {xn−1}, I ∩ Ci = {xi−1, xi}, i = 2, ..., n.
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C1

C2

C2

C5 C3C4

II

C1

C2

C5 C3
C4

I

C1

C2

C2

C5 C3
C4

C4

III

Figure 4.1: 3 types of configruations

Notice that π1(Symp(Ci, ki)) = Z for each i = 1, ..., n. Notice also that π0(Gki(Ci)) = Z
for each i for i = 2, ..., n − 1, and π0(Gk1(C1)) and π0(Gkn(Cn)) are trivial. Thus the

homomorphism ψ̄C associated to C is of the form Zn → Zn−2.
For each i = 1, ..., n, denote the generator (φi)t of π1(Symp(Ci, ki)) = Z by rot(i).

For each i = 2, ..., n − 1, denote by gi(i − 1) and gi(i) the generators gCi(xi−1) and

gCi(xi) of π0(G2(Ci)) = Z.

Then by Lemma 4.2.8 the homomorphism ψ̄C is described by

rot(1) → g2(1),

rot(2) → (0, g3(2)),

ψ̄C : rot(j) → (gj−1(j − 1), gj+1(j)), 3 ≤ j ≤ n− 2

rot(n− 1) → (gn−2(n− 2), 0)

rot(n) → gn−1(n− 1)

(4.9)

Choose the bases of π1(Symp(Ci)) and π0(G(C)) to be

{rot(1), · · · , rot(n)}

and

{g2(2), g3(3), g4(4), · · · , gn−1(n− 1)},

respectively. Notice that gi(i − 1) = ±gi(i), then by (4.9), ψ̄C is represented by the

following (n− 2)× n matrix if we drop the possible negative sign for each entry,
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1 0 1

0 1 0 1

0 0 1 0 1 0
. . .

. . .
. . .

1 0 1 0 0

1 0 1 0

1 0 1


Observe that the first n − 2 minor as a (n − 2) × (n − 2) is upper triangular matrix

whose determinant is ±1. This shows that ψ̄C is surjective.

For a type II configuration C ′ = C ∪ Cp, let x̄p be the intersection of Cp and Cp.

Notice that π1(Symp(C
′)) = Zn as in the case of C, with the Z summand from Cp

replaced by a Z summand from Cp. Notice also that π0(G(C ′)) = Zn−1 with the extra

Z summand coming from the new intersection point x̄p in Cp. Denote by rot(p̄) the

generator of π1(Symp(Cp, x̄p)). Denote by g′p(p) the generator gCp(x̄p) of π0(G3(Cp)).
By Lemma 4.2.8, the homomorphism ψ̄C′ is of the form Zn → Zn−1, and it differs from

ψ̄C as in (4.9) :

rot(p) = 0

rot(p̄)→ g′p(p)
(4.10)

It is not hard to see that ψ̄C′ is again surjective. We illustrate by the type II configuration

in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4), rot(5)} and {g2(2), g′2(2), g3(3), g4(4)},

ψ̄C′ is represented by the following 4× 5 matrix (if we drop the possible negative sign),
1 0 1

0 1 0 0

0 0 1 0 0

0 1 1


For a type III configuration C ′′ = C ′ ∪ Cq = C ∪ Cp ∪ Cq, observe first that
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π1(Symp(C
′′)) = Zn and π0(G(C ′) = Zn. By Lemma 4.2.8, we can describe ψ̄C′′ :

Zn → Zn similar to the case of the type II configuration C ′. Precisely, ψ̄C′′ differs from

ψ̄C in (4.9) as follows:

rot(p) = rot(q) = 0

rot(p̄)→ g′p(p)

rot(q̄)→ g′q(q)

(4.11)

It is easy to see that ψ̄C′′ is an isomorphism in this case. We illustrate by the type III

configuration in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4̄), rot(5)} and {g2(2), g′2(2), g3(3), g′4(4), g4(4)},

ψ̄C′′ is represented by the following square matrix (if we drop the possible negative sign),

1 0 1

0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1



4.2.4 Criterion

Finally, we arrive at the following criterion for the connectedness of Symph(X,ω).

Corollary 4.2.11. Suppose a stable, standard configuration C is type I, II or III, and

it is full. If Sympc(U) is connected, then Symph(X,ω) is connnected.

Proof. By Lemma 5.2 in [13], Sympc(U) is weakly homotopy equivalent to Stab1(C).

So by our assumption that Sympc(U) being connected, Stab1(C) is also connected.

Therefore the map ι : π0(Stab
0(C)) → π0(G)(C) associated to the homotopy fibration

(4.8) is a group isomorphism. Now we have ψC = ψ̄C .

Since C is type I, II or III, by Lemma 4.2.10, ψC is surjective. Notice that any

type I, II, or III configuration is simply-connected. By the assumption of C being full,
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we can apply Proposition 4.2.7 and Proposition 4.2.2 to conclude that Symph(X,ω) is

connnected.

4.2.5 Contractibility of Sympc(U) and the proof in the case of

CP 2#4CP 2

Let X = CP 2#4CP 2 and ω an arbitrary symplectic form on X. We consider a configu-

ration C in [13], consisting of symplectic spheres in homology classes S12 = H−E1−E2,

S34 = H −E3−E4, E1, E2, E3 and E4. Here {H,Ei} is the standard basis of H2(X;Z)

with positive pairing with ω. In Figure 2 we label the spheres by their homology classes.

E1

E2

E3

E4

S12 S34

Figure 4.2: Configuration of 4-point blow up

To apply the criterion in Corollary 4.2.11, we need to check that we can always find

a configuration C of such a homology type, so that

• C is stable.

• C is a type I, II or III configuration.

• C is full.

• Sympc(U) is connected.

Existence of such a configuration is a direct consequence of Gromov-Witten theory

and the first three statements follows from definition. Note also that the actual choice of

configuration will not affect the last statement because Symph(X) acts transitively on

C0, which means U is well-defined up to symplectomorphism for any choice of C ∈ C0.
It thus remains to prove the connectedness of Sympc(U).

Let us first recall the following result of Evans (Theorem 1.6 in [13]):
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Theorem 4.2.12. If C∗ × C is equipped with the standard (product) symplectic form

ωstd then Sympc(C∗ × C) is weakly contractible.

This is relevant since Evans observed in section 4.2 in his thesis [12] that, if (ω, J0)

is Kähler with ω monotone and C holomorphic, then (U, J0) has a finite type Stein

structure f with ω|U = −ddcf , and there is a biholomorphism Ψ from (U, J0) to C∗×C
(In addition, Ψ satisfies Ψ∗ωstd = ω|U ). We will generalize and prove this ovservation

in non-monotone case in Proposition 4.2.14.

Let us also recall the next result of Evans (Proposition 2.2 in [13]):

Proposition 4.2.13. If (W,J0) is a complex manifold with two finite type Stein struc-

tures φ1 and φ2, then Sympc(W,−ddcφ1) and Sympc(W,−ddcφ2) are weakly homotopy

equivalent.

Now we complete our proof of the connectedness of Symph(CP 2#4CP 2, ω) for an

arbitrary ω by proving the following

Proposition 4.2.14. Sympc(U, ω|U ) is weakly contractible.

Proof. We first choose a specific configuration C convenient for our purpose (as we

explained in the paragraph below Figure 4.2 this does not affect our result). According

to [21] Proposition 4.8, we can always pick an integrable complex structure J0 compatible

with ω, so that (X, J0) is biholomorphic to a generic blow up of 4 points on CP 2 (the

genericity here means that no 3 points lies on the same line, and indeed this can always

be done for less than 9 point blow ups). For such a generic holomorphic blow up, there

is a unique smooth rational curve in each class in the homology type of C. Thus we

canonically obtain a configuration C associated to J0. Observe that the complement

U = X \ C is biholomorphic to C∗ × C. That is because the configuration C is the

total transformation of two lines blowing up at four points. Removing C gives us a

biholomorphism from (U, J0) to CP 2 with two lines removed, which is C∗ × C.

Now we construct a Stein structure φ on (U, J0) with −ddcφ = ω|U , whenever ω is

a rational symplectic form on CP 2#4CP 2. Since (U, J0) is biholomorphic to C∗ × C
equipped with the standard finite type Stein structure (Jstd, ωstd = −ddc|z|2), we can

then apply Proposition 4.2.13 and Theorem 4.2.12 in this case to conclude the weak

contractibility of Sympc(U, ω|U ).
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So we assume that [ω] ∈ H2(X;Q). Up to rescaling, we can write PD([lω]) =

aH − b1E1 − b2E2 − b3E3 − b4E4 with a, bi ∈ Z≥0. Further, we assume b1 ≥ b2, b3 ≥ b4.
Since H−E1−E3 is an exceptional class we also have ω(H−E1−E3) > 0. This means

that a > b1 + b3, namely, 2a ≥ 2b1 + 2b3 + 2. Rewrite

PD([2lω]) = (2b1+1)(H−E1−E2)+E1+(2b1−2b2+1)E2+(2a−2b1−1)(H−E3−E4)

+(2a− 1− 2b1 − 2b3)E3 + (2a− 1− 2b1 − b4)E4.

Notice that the coefficients are all in Z>0. In this way we represent PD([2lω]) as

a positive integral combination of all elements in the set {H − E1 − E2, H − E3 −
E4, E1, E2, E3, E4}, which is the homology type of C.

Denote the symplectic sphere with homology class Ei in C by CEi , and similarly for

the two remaining spheres. Notice that each sphere is a smooth divisor. Consider the

effective divisor

F = (2b1 + 1)CH−E1−E2 + CE1 + (2b1 − 2b2 + 1)CE2 + (2a− 2b1 − 1)CH−E3−E4

+(2a− 1− 2b1 − 2b3)CE3 + (2a− 1− 2b1 − b4)CE4 .

There is a holomorphic line bundle L with a holomorphic section s whose zero divisor

is exactly F . Notice that

c1(L) = [F ] = [2lω].

By [18] section 1.2, we can take an hermitian metric | · | and a compatible connection on

L such that the curvature form is just 2lω. Moreover, for the holomorphic section s, the

fuction φ = −log|s|2 is plurisubharmonic on the complement U with −d(dφ◦J0) = 2lω.

Notice that F and C have the same support so the complement of F is the same as U .

Thus we have endowed (U, J0) with a finite type Stein structure φ.

As argued above, this implies that Sympc(U, ω|U ) = Sympc(U, 2lω|U ) is weakly

contractible when [ω] ∈ H2(X,Q) by the biholomorphism from (U, J0) to (C∗×C, Jstd).
Finally, suppose ω is not rational, but we assume ω(H) ∈ Q without loss of generality

by rescaling. We take a base point ϕ0 ∈ Sympc(U, ω|U ), and a Sn(n ≥ 0) family of

symplectomorphisms determined by a based map ι : Sn → Sympc(U, ω
′|U ). Denote the
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union of support of this Sn family by Vι, which is a compact subset of U .

Note the following fact:

Claim 4.2.15. There exists an ω′ symplectic on X such that:

1. [ω′] ∈ H2(X,Q),

2. [ω′](Ei) ≥ [ω](Ei), [ω
′](H) = [ω](H)

3. the configuration C is ω′− symplectic

4. (X \ C,ω′) ↪→ (X \ C,ω) in such a way that the image contains Vι.

Proof. Recall that to blow up an embeded ball B in a symplectic manifold (M,ω),

one removes the ball and collapses the boundary by Hopf fibration which incurs an

exceptional divisor. The reverse of this procedure is a blowdown.

Now take Ei in the configuration C and blow them down to get a disjoint union of

balls Bi in the blown-down manifold, which is a symplectic CP 2 with line area equal

ω(H). One then enlarge Bi by a very small amount to B′i so that the sizes of B′i become

rational numbers. After the enlargement, blow up B′i. This produces a symplectic form

on X which clearly satisfies (1) and (2). (3) can be achieved as long as the enlarged ball

has boundary intersecting proper transformation of S12 and S34 on a big circle. This is

always possible: perturb S12 and S34 slightly so that they are symplectically orthogonal

to Ei before blow-down. Then in a neigbhorhoold of the resulting balls Bi, one has a

Darboux chart where Bi is the standard ball, while the portion of S12 and S34 inside

this chart is the x1−x2 plane. This is guaranteed by symplectic neighborhood theorem

near Ei. Hence the (3) is obtained when the enlargement stays inside the Darboux

chart. For more details one is referred to [36].

To see (4), we note that from the above description, (X \C,ω′) is symplectomorphic

to the complement of
⋃
iB
′
i union two lines (the proper transforms of S12 and S34) in

the symplectic CP 2 from blowing down. The same thus applies to (X \C,ω), while B′i

are replaced by Bi ⊂ B′i. Therefore, the statement regarding embedding holds in (4).

Since Vι is compact and embeds in (X \ C,ω), as long as the amount of enlargement

from Bi to B′i is small enough, the embedded image contains Vι as claimed.
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Therefore we can find an isotopy in Sympc(U, ω
′|U ) ↪→ Sympc(U, ω|U ), from the

Sn family of maps to the base point ϕ0 by the proved case when ω is rational. We

emphasize in the above proof, the choice of ω′ depends on ι, but this is irrelevant for

our purpose. This concludes that for arbitrary symplectic form ω on X, Sympc(U, ω|U )

is weakly contractible and hence Symph(CP 2#4CP 2) is connected for any symplectic

form.

4.3 The fundamental group of Symp(X,ω) when χ(X) ≤ 7

We apply Corollary 3.4.7, which provides topological information for Jopen, together

with a very useful fact in Lemma 4.3.4 to study the fundamental group of Symp(X,ω).

4.3.1 Proof of Theorem 1.2.6

We can work out the homotopy type of G(C) and Symp(C), and we are particularly

interested in these cases:

Proposition 4.3.1. For CP 2#kCP 2, k = 2, 3, 4, Stab(C) is independent of the given

symplectic form. In particular, we know the weak homotopy type of Stab(C):

• For CP 2#3CP 2, Stab(C) ' T2.

• For CP 2#2CP 2, Stab(C) ' T2.

• For CP 2#4CP 2, Stab(C) ' ?.

Proof. The monotone case for CP 2#kCP 2, k = 3, 4 is computed in [13]. And for

monotone CP 2#2CP 2 , Stab(C) = T2.

For the general case we consider the following portion of fibration:

Sympc(U) −−−−→ Stab1(C) −−−−→ Stab0(C) −−−−→ Stab(C)y y
G(C) Symp(C).

(4.12)
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In [29], we show that for the given configuration in the above cases, is weakly homotopic

to a point:

? ∼= Sympc(U) ∼= Stab1

. And as in Lemma 4.4 and 4.5, the homotopy type of G(C), Symp(C) are the same as

the monotone case. With the computation of G(C), Symp(C) given in equations 4.4and

4.2, we have the three fibrations for k = 1, 2, 3 respectively:

Z→ Stab(C)→ (S1)3,

Z3 → Stab(C)→ (S1)5,

Z4 → Stab(C)→ (S1)4,

And we need to consider the connecting homomorphism π1(Symp(C)) →
π0(Stab

0(C)).

To do this we consider the composition map

ψ̄ = ι ◦ ψ : π1(Symp(C))→ π0(Stab
0(C))→ π0(G(C)).

And by Lemma 2.9 in [29], the composition map is surjective and hence the con-

necting homomorphism π1(Symp(C))→ π0(Stab
0(C)) is surjective.

And hence we finished the computation of weak homotopy type of Stab(C) in each

case: CP 2#kCP 2, for k = 2, 3, 4 Stab(C) ∼= T2,T2, ? respectively.

Remark 4.3.2. For a symplectic rational 4 manifold X with Euler number χ(X) < 4,

the same computation is given in Lemma 4.3.11, where the proof is the same as here

and much easier.

Remark 4.3.3. For the CP 2#5CP 2 case, we will show in Proposition 5.1.4 that dia-

gram 1.1 is a homotopy fibration, and give the description of Stab(C), generalizing the

result of [13] in the monotone case.

The non-trivial fact leads to the final computation of π1(Symph(X,ω):
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Lemma 4.3.4. And in the cases as the previous lemma, π1(Symph(X,ω), π1(C0) are

both free Abelian groups. And the rank of π1(C0) equals N = the number of -2 symplectic

sphere classes. In addition we have the exact sequence

0→ π1(Stab(C))→ π1(Symph)→ ZN → 0.

Proof. We analyze the right end of the diagram to prove the second statement: For

4-point blow up, by proposition 4.3.1, we have

Stab(C) ' ? −−−−→ Symph −−−−→ C0. (4.13)

Since in this fibration the fiber is weakly contractible, the base C0 is weakly equivalent

to the total space Symph. And hence π1(C0) ∼= π1(Symph). Since Symph is a Lie group,

π1(Symph) is Abelian and hence π1(C0) is an Abelian group. Then π1(C0) = H1(C0),
which is free Abelian and whose number of generators equals the number of -2 symplectic

spheres by Theorem 3.4.6 and Lemma 3.1.14. For CP 2#kCP 2, k = 2, 3, by proposition

4.3.1, the right end becomes

Stab(C) ' T2 −−−−→ Symph −−−−→ C0. (4.14)

And we write down the homotopy exact sequence

Z2 → π1(Symph)→ π1(C0)→ 1.

As a fundamental group of a topological group, π1(Symph) is Abelian, And π1(C0)
must also be Abelian because it is the surjective image of an Abelian group. Note

that let X be CP 2#kCP 2, k = 2, 3, it admits a torus action for any given symplectic

form. And the homology classes of configuration C can be realized as the boundary

of the moment polytope Now take a toric divisor C, then we have a torus action T

on X fixing C, i.e. T ⊂ Stab(C). There is a inclusion map T → Symph(X,ω), and

theorem 1.3 and theorem 1.25 in [46] shows that the induced map on fundamental group

ιπ1(T ) = Z2 → π1(Symph) is an injection. Now observe that this inclusion actually
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factor through Stab(C). Namely, we have the composition

T → Stab(C)→ Symph(X,ω),

where the first map is the inclusion of T into Stab(C) and the second map is the inclusion

of isotropy Stab(C) at C into Symph(X,ω). Consider the induced map on fundamental

group of the composition:

Z2 f→ Z2 g→ π1(Symph)

We have shown that ι = g ◦f is injective, which means g(Im(f)) is a rank 2 free abelian

group. Indeed, the image of a free abelian group is either itself or has less free rank.

Namely, suppose for a 6= b, g(a) = g(b), then we have g(a− b) = 0 and hence Im(g) has

free rank less than 2. This is contradictory against the fact that g(Im(f)) has rank 2.

And it follows that the map Stab(C)→ Symph(X,ω) induces injective map of the left

arrow Z2 → π1(Symph) of the homotopy exact sequence.

In summary we have the following short exact sequence of groups:

0→ π1(Stab(C))→ π1(Symph)→ ZN → 0.

Hence we understand the fundamental group of Symph(X,ω) in the following the-

orem:

Theorem 4.3.5. If (X,ω) is a symplectic rational 4 manifold with Euler number

χ(X) ≤ 7, and N = rank(H1(Jopen)) equals the number of −2 ω−symplectic spheres

ω, then

π1(Symp(X,ω)) = ZN ⊕ π1(Symp(X,ωmon)).

Proof. We first deal with cases X = CP 2#kCP 2, k = 2, 3, 4,: By Lemma 4.3.4,

π1(Symp(X,ω) = π1(Stab(C)) ⊕ H1(Jopen). Corollary 3.4.7 shows that H1(Jopen) =

⊕AiH
0(JAi), where each Ai is a symplectic -2 class. Corollary 3.4.3 shows that for

X = CP 2#kCP 2, k = 2, 3, 4, the space of -2 symplectic sphere in a fixed homology

class is connected, hence H0(JAi) = Z for any Ai. And on the other hand, π0(Stab(C))
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is trivial, hence, the map π1(Symph)→ π1(C0) is surjective. Hence we show

π1(Symp(X,ω) = π1(Stab(C))⊕ ZN ,

where N equals the number of -2 symplectic spheres. And hence the rank of

π1(Symph(X,ω) equals the rank of Stab(C) plus the number of -2 symplectic spheres.

And further, in the monotone case, the space C0 is contractible, and (Symp(X,ωmon) '
Stab(C). Hence

π1(Symp(X,ω)) = ZN ⊕ π1(Symp(X,ωmon)).

For the cases CP 2, S2 × S2,CP 2#CP 2, the above results directly follows from

the computation in [19], [1], and [3]: For monotone CP 2, S2 × S2,CP 2#CP 2, the

Symph(X,ω) is weakly homotopic equivalent to PU(3), SO(3) × SO(3), U(2) respec-

tively. In particular,

π1(Symph(S2 × S2), ωmono) = Z2 ⊕ Z2; π1(Symph(CP 2#CP 2), ωmono) = Z.

And for non-monotone form of the latter 2 cases, Corollary 2.7 in [3] shows that

π1(Symph(S2 × S2), ω) = Z⊕ Z2 ⊕ Z2;π1(Symph(CP 2#CP 2), ω) = Z.

This verifies our assentation here. And we can also give a discussion about the cases

with small Euler number in the section 4.3.2.

Combine the results in [33] and [29], let X be a symplectic rational 4 manifold with

Euler number χ(X) ≤ 7, Symph(X,ω) is connected, then the homological action of

Symp(X,ω) is generated by Dehn twist along Lagrangian -2 spheres. Hence:

Corollary 4.3.6. The homological action, π0(Symp(X,ω) = Γ(X,ω), which is a fi-

nite Coxeter group generated by reflection along -2 Lagrangian spheres. Γ(X,ω) is the

subgroup of the Coxeter group corresponding to the root system of Lagrangians in the

manifold X as in section 2.1.5.

By considering the chamber structure of the symplectic cone for each case, we have

the following corollary:
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Corollary 4.3.7. Let X be a rational 4 manifold with Euler number χ(X) ≤ 7, with a

given symplectic form ω. We have the following quantity

Q = PR[π0(Symph(X,ω))] +Rank[π1(Symp(X,ω))]− rank[π0(Symph(X,ω))],

which is a constant only depends on the topological type of X. Here PR[π0(Symp(X,ω)]

is the number of positive roots of the reflection group π0(Symp(X,ω) which usually

equals the number of Lagrangian -2 spheres, and Rank[π1(Symp(X,ω))] denote the

number of generator of the abelian group π1(Symp(X,ω)).

Proof. One can verify the corollary directly from the above-mentioned computation in

the case CP 2, S2 × S2.

And for the other rational manifolds CP 2#kCP 2, k = 1, 2, 3, 4 the group

π1(Symph(X,ω) is free abelian. And this corollary follows from the fact that for

a symplectic rational 4 manifold whose Euler number is small(less than 12), the square

-2 sphere classes is a set of positive roots of certain simple laced root system. And

for a given X , when deforming the symplectic form in the symplectic cone, the

set of Lagrangian -2 spheres is a set of positive roots of a subsystem, which gener-

ates π0(Symp(X,ω). And the set of symplectic -2 sphere classes, which generates

π1(Symp(X,ω), is a set a set of positive roots of the system that is complementary to

the Lagrangian system.

And we list the number of this constant in table 4.1: for 1,2,3,4 points blow up of

CP 2, Q is constant of any form. And for 5 blow up, in most circumstances, Q is a

constant 15 as in Corollary 5.1.44, and we further conjecture that this holds for any

form, see Conjecture 5.1.46.

Remark 4.3.8. Also as noticed in [26], the generator of homological action of diffeo-

morphism group of rational manifolds can be realized as Coxeter reflections. And as

shown in [53] Theorem 4’, the group is a Coxeter reflection group whose Dynkin diagram

is a subgraph of the root system of the manifold.

Remark 4.3.9. One can compare the table 4.1 with the upper bound given by McDuff

in [39] Corollary 6.6 when X = CP 2. And we will see from the next section that the
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M Q

CP 2#CP 2 1

CP 2#2CP 2 3

CP 2#3CP 2 6

CP 2#4CP 2 10

CP 2#5CP 2 15 ?

Table 4.1: The quantity Q on the persistence of Symp(X,ω)

upper-bounds she gave there can be realized when one blow up X = CP 2 for most

occasions.

4.3.2 Discussion in each case

We explicitly compute π1(Symph(X,ω) for Theorem 1.2.6 in table 4.2,4.3,4.4. Through

out this section, N denotes the number of Symplectic -2 sphere classes of a given form

for a rational 4 manifold; ΓL denotes the Lagrangian lattice of a wall, which is the

same as Γ(X,ω) when ω is on the wall. And Γ(X,ω) is the homological action of the

Symplectic mapping class group π0(Symp(X,ω)) on H2(X) as in Theorem 4.3.6.

The case of CP2#2CP2

For CP 2#2CP 2, with any symplectic form, rank of π1(Symp(X,ω)) equals 2 plus

the number of -2 Symplectic spheres, while π0(Symp(X,ω) is a Coxeter group of a

sublattice of A1.

We can summarize the above in table 4.2.

k-Face ΓL N π1(Symph(X,ω) ω area

OB A1 0 Z2 c1 = c2
∆BOA trivial 1 Z3 c1 6= c2

Table 4.2: ΓL and π1(Symph(CP 2#2CP 2))

The case of CP2#3CP2

For CP 2#3CP 2, with any symplectic form, Rank[π1(Symp(X,ω))] equals 2 plus
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the number of -2 Symplectic spheres, while π0(Symp(X,ω) is a Coxeter group of a

sublattice of A1 × A2.

The Weyl arrangement of E3 = A2×A1 is illustrated using the picture 2.1. And we

can fill the table 2.1 with ΓL and π1(Symp(X,ω)) such that it becomes table 4.3.

k-Face ΓL N π1(Symph(X,ω) ω−area

Point M A1 × A2 0 Z2 (13 ,
1
3 ,

1
3): monotone

Edge MO: A2 1 Z3 λ < 1; c1 = c2 = c3
Edge MA: A1 × A1 2 Z4 λ = 1; c1 > c2 = c3
Edge MB: A1 × A1 2 Z4 λ = 1; c1 = c2 > c3
∆MOA: A1 3 Z5 λ < 1; c1 > c2 = c3
∆MOB: A1 3 Z5 λ < 1; c1 = c2 > c3
∆MAB: A1 3 Z5 λ = 1; c1 > c2 > c3
TMOAB: trivial 4 Z6 λ < 1; c1 > c2 > c3

Table 4.3: ΓL and π1(Symph(X,ω) for CP 2#3CP 2

The case of CP2#4CP2

For CP 2#4CP 2, as described in section 2.1.5: Combinatorially, the normalized

reduced cone is convexly generated by 4 rays {MO,MA,MB,MC}, with 4 verticesM =

(13 ,
1
3 ,

1
3 ,

1
3), O = (0, 0, 0, 0), A = (1, 0, 0, 0), B = (12 ,

1
2 , 0, 0), C = (13 ,

1
3 ,

1
3 , 0); and these

root edges corresponding to Lagrangian simple roos as follows, MO = H−E1−E2−E3,

MA = E1 − E2, MB = E2 − E3, MC = E3 − E4,

MA MB MC MO
A4

The open chamber in this case is a 4-dimensional polytope with the tetrahedron in

2.1 of the CP 2#3CP 2 being a facet. π1(Symph(CP 2#4CP 2)) has 10 generators and the

homology action is trivial. A wall of codimension k is the interior of a facet of the closure

of open chamber, where k number of “>” made into “=”. And the Lagrangian lattice

of the wall W ΓL is given by removing the generating rays of the wall W . Specifically,

the walls are listed in the table 4.4.

Remark 4.3.10. In [6], the computation of π1(Symph(X,ω) for any given form on

3-fold blow up of CP 2 is given. There the strategy is counting torus (or circle) actions.
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K-face ΓL N π1(Symph(X,ω) ω area

Point M A4 0 trivial monotone, λ = 1; c1 = c2 = c3 = c4
MO A3 4 Z4 λ < 1; c1 = c2 = c3 = c4
MA A3 4 Z4 λ = 1; c1 > c2 = c3 = c4
MB A1 × A2 6 Z6 λ = 1; c1 = c2 > c3 = c4
MC A1 × A2 6 Z6 λ = 1; c1 = c2 = c3 > c4

MOA A2 7 Z7 λ < 1; c1 > c2 = c3 = c4
MOB A1 × A1 8 Z8 λ < 1; c1 = c2 > c3 = c4
MOC A2 7 Z7 λ < 1; c1 = c2 = c3 > c4
MAB A2 7 Z7 λ = 1; c1 > c2 > c3 = c4
MAC A1 × A1 8 Z7 λ = 1; c1 > c2 = c3 > c4
MBC A1 × A1 8 Z7 λ = 1; c1 = c2 > c3 > c4

MOAB A1 9 Z8 λ < 1; c1 > c2 > c3 = c4
MOAC A1 9 Z9 λ < 1; c1 > c2 = c3 > c4
MOBC A1 9 Z9 λ < 1; c1 = c2 > c3 > c4
MABC A1 9 Z9 λ = 1; c1 > c2 > c3 > c4

MOABC trivial 10 Z10 λ < 1; c1 > c2 > c3 > c4

Table 4.4: ΓL and π1(Symph(X,ω) for CP 2#4CP 2

And a generating set of π1(Symph(X,ω) is given using circle action. Note that our

approach gives another (minimal) set of π1(Symph(X,ω). We give the correspondence

of the two generating sets: By Remark 3.4.5, any -2 symplectic sphere in 3 fold blow

up of CP 2, there is a semi-free circle τ action having this -2 symplectic sphere as fixing

locus, where τ is a generator of π1(Symph(X,ω).

And if a rational 4 manifold X with Euler number χ(X) < 7, then it is toric. We

discuss the relation between our approach and counting torus or circle action in the

next section 4.3.2:

The case of The cases CP 2, S2 × S2, CP 2#CP 2 and counting torus or circle actions

From previous results [1],[3],[24], we know that

K = PR[π0(Symp(X,ω)] +Rank[π1(Symp(X,ω))]

is a constant for the cases mentioned in this section. We neither claim any originality
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nor provide any new results for these cases. Instead, we use our strategy can give a

uniform description of this phenomenon. Specifically, we will show how one obtain a

generating set of π1(Symph) using generators of Stab(C) and π1(Jopen).

In these cases, we need symplectic spheres with square 0 or 1. Note that in [29]

for cases when χ(X) < 7 we can choose an appropriate configuration such that it has

a complement U whose compactly supported symplectomorphism group Sympc(U) is

contractible. And the homotopy type of Stab(C) in the monotone cases is computed in

[19, 1, 3, 24].

Proof similar as proposition 4.3.1, it is easy to check the following theorem for those

cases:

Lemma 4.3.11. When χ(X) < 7 with the configuration given below, the homotopy type

of Stab(C) for the non-monotone case is the same as the monotone case.

Hence we can summarize the fibration Stab(C) → Symph → C for the cases below

with any given form:

• For CP 2, C = {H}, the fibration is

Stab(C) ' U(2)→ Symph → C ' CP 2.

• For S2 × S2, C = {B,F}, the fibration is

T2 ' Stab(C)→ Symph → S2 × S2 × Jopen.

• For CP 2#CP 2, C = {H,H−E, p ∈ H−E}, where p is a marked point on H−E,

the fibration is

Stab(C) ' S1 → Symph → S2 × Jopen.

Note that the base C ' CP 2 comes from the fact that there is a fibration

CP 2 →M(H,J )→ J , whereM(H,J ) is the universal moduli of stable curve in class

H.

In the following cases, we will use our approach to give a description how one can

combine the generator of Stab(C) and π1(Jopen) to obtain a generating set of π1(Symph).



75

The argument in Lemma 4.3.4 can not directly apply since the torus action induced map

on the fundamental group might be non-injective. Hence we deal with them separately:

• For CP 2, the Symp(X,ω) is homotopic to PU(3) and its fundamental group is

Z3, which has one generator. We take the configuration to be [z0, 0, 0] and take

the circle action to be [z0 : z1 : z2] → [z0 : t · z1 : t · z2]. It is not hard to see this

action is semi-free (note that if we change the weights of the action, it might be

not semi-free, e.g. [z0 : z1 : z2] → [z0 : t · z1 : t2 · z2] has isotropy Z2 at point

[1 : 0 : 1]). And by Corollary 1.5 of [44], this action maps to a nontrivial element

in π1(Symph). Further, this circle can be naturally included into Stab(C) as a

nontrivial loop. This means the image of the map π1(Stab(C)) = Z→ π1(Symph)

contains the generator of π1(Symph).

• For S2 × S2: Take a toric divisor C = {B,F}, take two circle actions CB, CF

generated by the two factors of the torus, fixing spheres B and F respectively.

Every effective circle action on S2 × S2 is semi-free, and hence by Corollary 1.5

of [44], the inclusion of CB, CF each maps to non-trivial element in π1(Symph).

In addition, by inclusion, we can map CB, CF to a non-trivial loop in the first

and second factor in π1(Stab(C)) respectively. (This is because the Seidel rep-

resentation of the images of CB, CF are different in the quantum homology ring:

S(CB) = B ⊗ qtµ/2,S(CF ) = B ⊗ qt1/2, see [45] Example 5.7. This means the

image of the left arrow in the homotopy exact sequence

Z⊕ Z→ π1(Symph)→ π1(S
2 × S2 × Jopen)→ 1

has two generators in π1(Symph). On the other hand, π0(Symph(X,ω)) in Corol-

lary 1.2.7 and the above cases are trivial, which means the right arrow is surjective.

• For CP 2#CP 2, take a toric divisor C = {E,H−E}, If we choose the corresponding

S1 action with fixing locus E or H − E, it is clear that this action is semi-free,

i.e. the isotropy is either trivial or the whole S1. We denote them by CE , CH

respectively. And by a theorem of [44], in the left arrows in the homotopy exact

sequence

Z⊕ Z→ π1(Symph)→ π1(S
2 × Jopen)→ 1,
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the inclusion of CE , CH each maps to non-trivial element in π1(Symph). In ad-

dition, by inclusion, we can map CE , CH to a non-trivial loop in the first and

second factor in π1(Stab(C)) respectively. (This is because the Seidel repre-

sentation of the images of CE , CH are different in the quantum homology ring:

S(CE) = B ⊗ qtc1 ,S(CH) = B ⊗ qt2c1−1, see [45] Example 5.6. This means the

image of the left arrow in the

Z⊕ Z→ π1(Symph)→ π1(S
2 × Jopen)→ 1

is nonempty by the same argument as above. Also, [3] Corollary 2.7 shows that this

generator has infinite order and hence the left arrow is injective. And the triviality

of π0(Symph(X,ω)) apply here showing that the right arrow is surjective. And

hence Lemma 4.3.4 still holds for these cases.



Chapter 5

Rational surfaces with Euler

number grater or equal to 8

This Chapter is about the topology of Symph(X,ω) when X is a symplectic rational

surface which is diffeomrophic to CP 2#kCP 2, k ≥ 5. When k = 5, we had a complete

result except a 1-dimension family of form which is the equal blow up of the monotone

Hirzburch surface.

5.1 Symplectic -2 spheres and Symp(CP 2#5CP 2, ω)

In this section, we study the low-rank homotopy groups of Symph(X,ω), where X is

CP 2#5CP 2 and ω is an arbitrary symplectic form. The π0 is particularly interesting:

In [52] and [13] for a monotone symplectic form, π0 of Symph(X,ωmon) is shown to

be π0Diff+(S2, 5), which is an infinite discrete group generated by square Lagrangian

Dehn twists. In contrast, Dusa McDuff pointed out in [39] that for a certain symplectic

form such that the blow-up size is small and there’s no Lagrangian sphere, the group

Symph(CP 2#5CP 2, ω) is connected, see Remark 1.11 in [39] and Remark 5.1.32 for

details. We could now give a complete description of the symplectic mapping class

group and discover the “forgetting strands” phenomena in Torelli SMC: as in the braid

group on spheres when deforming the symplectic form:

Recall that the normalized reduced symplectic cone of X = CP 2#5CP 2 is a 5-

dimension Polyhedron P 5 with the monotone form as a vertex. And it is convexly

77
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spanned by five root edges, where each of them corresponds to a simple root in the

Lagrangian root system ΓL.

• On the monotone point, [52],[13] shows that Symph(X,ωmon) is weakly homotopic

to Diff+(S2, 5) and hence the TSMC is π0(Diff+(S2, 5)).

• On a root edge MA where the number of symplectic sphere classes is minimal (8

classes) other than the monotone point, we show that TSMC “forgets one strand”

and becomes π0(Diff+(S2, 4)) in Proposition 5.1.18.

• Further when the form admit more symplectic -2 sphere classes, namely, ω ∈
P 5 \ MA where MA is the closure of MA, TSMC behaves like forgetting one

more strand and become trivial(because π0(Diff+(S2, 3)) is trivial) in Proposition

5.1.29.

Further, for rank of fundamental group of Symph(CP 2#5CP 2, we give a lower

bound given by Lemma 5.1.34 and a upper-bound modified from [39] corollary 6.4 and

6.9. We achieve the following: for a reduced symplectic form ω, if ci < 1/2, and TSMC

is connected, then rank of π1(Symph(X,ω)) = N − 5. This further imply the isotopy

uniqueness up to symplectomorphism of homologous -2 symplectic spheres.

5.1.1 Basic set-up and pure braid groups on a sphere

The stragety

For CP 2#5CP 2, we choose the configuration to be the following:

2H − E1 − E2 − E3 − E4 − E5

E1 E2 E3 E4 E5

Identifying with S2×S2#4CP 2 by the base change in equation 2.2, the configuration

is C = {B + F −E2 −E3 −E4, B −E1, F −E1, E2, E3, E4}. Let C0 denote the space of
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orthogonal configurations and by Lemma 4.1.1, C0 is weakly homotopic to C, which is

homotopic to JC . We know from Lemma 3.4.8 that JC = Jopen.
And we will study Symp(CP 2#5CP 2, ω) using the strategy described in 1.1 and the

following symplectomorphism called ball-swapping as in [55]:

Definition 5.1.1. Suppose X is a symplectic manifold. And X̃ a blow up of X at a

packing of n balls Bi of volume vi. Consider the ball packing in X ι0 :
∐n
i=1B(i)→ X,

with image K. Suppose there is a Hamiltonian family ιt of X acting on this ball backing

K such that ι1(K) = K Then ι1 defines a symplectomorphism on the complement of K

in X. From the interpretation of blow-ups in the symplectic category [41], the blow-ups

can be represented as

X̃ = (X\ιj(
n∐
i=1

Bi))/ ∼, for j = 0, 1.

Here the equivalence relation ∼ collapses the natural S1-action on ∂Bi = S3. Hence

this symplectomorphism on the complement defines a symplectomorphism on the blow

up X̃.

First recall a fact about relative ball packing in CP 2:

Lemma 5.1.2. For CP 2 with symplectic form ω, where PD[ω] = H, suppose there

are positive number c1, · · · , c5 such that max{ci} ≤ 1/2,
∑
ci < 2, then there is a

ball packing relative to a given RP 2, denoted by ι :
∐5
i=1B(i) → CP 2, such that the

symplectic area of exceptional curve Ei corresponding to Bi is ci.

Proof. By [9] Lemma 5.2, it suffices to pack 5 balls of given sizes ci into (S2×S2,Ω1, 1
2
).

Without lose of generality we assume that c1 ≥ · · · ≥ c5. Since blowing up a ball of

size c1 (here by ball size we mean the area of the corresponding exceptional sphere) in

(S2 × S2,Ω1, 1
2
) leads to (CP 2#2CP 2

, ω′) with ω′ dual to the class (32 − c1)H − (1 −
c1)E1 − (12 − c1)E2, it suffices to prove that the vector

[(
3

2
− c1)|(1− c1), c2, c3, c4, c5, (

1

2
− c1)]
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denoting the class

(
3

2
− c1)H − (1− c1)E1 − (

1

2
− c1)E6 −

5∑
i=2

ciEi

is Poincaré dual to a symplectic form for CP 2#6CP 2
.

It is a symplectic form ω′, because it pair Ei, H −Ei−Ej and 2H −E1− · · ·− Ěi−
· · · − E6 are positive:

• The minimal value of ω(H − Ei − Ej) is either

(
3

2
− c1)− c2 − c3 > 0;

or (
3

2
− c1)− c2 − (1− c1) > 0;

this means each H − Ei − Ej has positive area.

• The minimal value of ω(2H − E1 − · · · − Ěi − · · · − E6) is either

2(
3

2
− c1)− (1− c1)− c2 − c3 − c4 − (

1

2
− c1) = 2− c2 − c3 − c4 − (

1

2
− c1) > 0;

or 2(
3

2
− c1)− (1− c1)− c2 − c3 − c4 − c5 = 2− c2 − c3 − c4 − c5 > 0;

this means 2H − E1 − · · · − Ěi − · · · − E6 has positive area.

And hence there is a ball packing ι :
∐5
i=1B(i) → CP 2 relative to RP 2, such that

the symplectic area of exceptional curve Ei corresponding to Bi is ci.

Then we review a fact about symplectomorphism of non compact surfaces:

Lemma 5.1.3. Let Symp(S2, n) denote the group of symplectomrophism(indeed area

preserving diffeomophism) of the n-punctured sphere. and Symp(S2,
∐n
i=1Di) denote
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the group of symplectomrophism of the complement of n disjoint closed disk (with smooth

boundary) in S2. Symp0(S
2, n) and Symp0(S

2,
∐n
i=1Di) are their identity component

respectively. Then Symp(S2, n) is isomorphic to Symp(S2,
∐n
i=1Di). Further,

Symp(S2,
n∐
i=1

Di)/Symp0(S
2,

n∐
i=1

Di) = Symp(S2, n)/Symp0(S
2, n),

both can be identified with π0Symp(S
2, n) = π0Diff+(S2, n).

Proof. The statements follow from the fact that n-punctured sphere is diffeomorphic to

S2 with n disjoint open disk removed. Indeed one can do this by local polar coordinate

centered at the punctures to map the former to the latter. And because both domains

(n-punctured sphere and S2 with n open disk removed) have finite volume, the above

diffeomorphism push the symplectic form on the former forward into a positive constant

multiple of the form on the latter.

And the last statement is obvious because Symp(S2, n) is homotopic to Diff+(S2, n)

by Moser’s theorem, see [7] Chapter 7.

Now we review the strategy introduced in section 4.1 and verify the following:

Proposition 5.1.4. For CP 2#5CP 2 with any symplectic form ω, the diagram 1.1 is a

fibration. And if PD[ω] := H−c1E1−c2E2−c3E3−c4E4−c5E5, also denoted by vector

(1|c1, c2, c3, c4, c5), such that ci < 1/2,∀i ∈ {1, 2, 3, 4, 5}, then Stab(C) ' Diff+(S2, 5).

Proof. Firstly, it suffices to verify that the following is a fibration:

Sympc(U) −−−−→ Stab1(C) −−−−→ Stab0(C) −−−−→ Stab(C)y y
G(C) Symp(C).

(5.1)

And indeed we only need to argue the restriction map Stab(C) → Symp(C) is

surjective:

By Lemma 4.2, Symp(C) = ΠiSymp(Ei) × Symp(Q, 5), where Symp(Ei, pi) is

the symplectomorphism group of the sphere in class Ei fixing the intersection point

pi = Ei ∩Q, and Symp(Q, 5) is the symplectomorphism group of the sphere in class in
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2H −E1− · · ·E5 fixing 5 intersection points. The surjection to the group Symp(Ei, pi)

is clear.

Then we need to prove the restriction map Stab(C)→ Symp(C) is surjective on the

factor Symp(Q, 5). Note this means for any given h(2) ∈ Symp(Q, 5) we need to find

a symplectomorphism h(4) ∈ Stab(C) which fixes the whole configuration C as a set,

whose restriction on Q is h(2). To achieve this, we can blow down the exceptional spheres

E1 · · ·E5, and obtain a CP 2 \
∐5
i=1B(i) with a conic S2 in homology class 2H and five

disjoint balls
∐5
i=1B(i) each centered on this conic and the intersections are 5 disjoint

disks on this S2. Note that by the above identification in Lemma 5.1.3, this blow down

process sends h(2) in Symp(Q, 5) to a unique h(2) in Symp(S2,
∐5
i=1Di). It suffice to

find a symplectomorphism h(4) whose restriction is h(2), and fixing the image of balls∐5
i=1B(i). Because blowing the balls

∐5
i=1B(i) up and by definition 5.1.1, we obtain a

symplectomorphism h(4) ∈ Stab(C) whose restriction is the given h(2) ∈ Symp(Q, 5).

Now for a given h(2) ∈ Symp(Q, 5), we will first consider its counterpart h(2) in

Symp(S2,
∐5
i=1Di). One can always find f (4) ∈ Symp(CP 2, ω) whose restriction on S2

is h(2) in Symp(S2,
∐5
i=1Di). We can construct f (4) using the method as in Lemma

2.5 in [29]: h(2) in Symp(S2,
∐5
i=1Di). is a hamiltonian diffeomorphism on S2 because

S2 is simply connected. Then we cut off in a symplectic neighborhood of S2 to define

the hamiltonian diffeomorphism f (4) ∈ Symp(CP 2#5CP 2, ω), which fixing the 5 inter-

section disks
∐5
i=1Di. But the blow up of f (4) is not necessarily in Stab(C) because

there’s no guarantee that f (4) will fix the image of 5 balls
∐5
i=1B(i). Then we need

another symplectomorphism g(4) ∈ Symp(CP 2, ω) so that g(4) move the the five sym-

plectic balls back to their original position in CP 2. This can be done by connectedness

of ball packing relative a divisor (the conic in class 2H in our case). Namely, by Lemma

4.3 and Lemma 4.4 in [55], there exists a symplectomorphism g(4) ∈ Symp(CP 2, ω)

such that the composition h(4) = g(4) ◦f (4) is a symplectomorphism fixing the five balls.

And blowing up the 5 balls we obtain an element h(4) in Stab(C), which is a ball swap-

ping symplectomorphism whose restriction on Symp(C) creates the group Symp(Q, 5).

Hence this restriction map Stab(C)→ Symp(C) is surjective.

It is clearly that the action of Stab(C) on Symp(C) is transitive and by Theorem

A in [47] Stab(C) → Symp(C) is a fibration. The rest parts of the diagram being a

fibration is the same as the arguments in [29].
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Then we verify that

Lemma 5.1.5. If PD[ω] := H−c1E1−c2E2−c3E3−c4E4−c5E5, also denoted by vector

(1|c1, c2, c3, c4, c5), such that ci < 1/2,∀i ∈ {1, 2, 3, 4, 5}, then Stab(C) ' Diff+(S2, 5).

Proof. With the assumption ci < 1/2, we can argue following [13] and show that

π1(Symp(C)) surjects onto π0(Sympc(U)) : ci < 1/2 here is because Lemma 36 in

requires [13] the circle action to be away from the zero section.

Let µ be the moment map for the SO(3)-action on T ∗RP2. Then ||µ|| generates a

Hamiltonian circle action on T ∗RP2 \ RP2 which commutes with the round cogeodesic

flow. Symplectically cutting along a level set of ||µ|| gives CP 2 and the reduced locus

is a conic. Pick five points on the conic and ||µ||-equivariant balls of volume given

by the symplectic form centered on them (this is always possible by Lemma 5.1.2

since the ball sizes ci < 1/2 allow the packing to be away from the zero section).

(CP 2#5CP 2, ω) is symplectomorphic to the blow up in these five balls and the circle

action preserves the exceptional locus. Hence by Lemma 36 in [13], the diagonal element

(1, . . . , 1) ∈ π1(Symp(C)) = Z5 maps to the generator of the Dehn twist of the zero

section in T ∗RP2, which is the generator in π0(Sympc(U)).

And here we also need Proposition 3.3 in [29], where the same argument work here

after checking the following: Assume that [ω] ∈ H2(X;Q). Up to rescaling, we can write

PD([lω]) = aH−b1E1−b2E2−b3E3−b4E4−b5E5 with a, bi ∈ Z≥0. Further, we assume

b1 ≥ · · · ≥ b5. Then we can represent PD([lω]) as a positive integral combination of

all elements in the set {2H −E1 −E2 −E3 −E4 −E5, E1, E2, E3, E4, E5}, which is the

homology type of C. And the proof is a direct computation:

PD([lω]) = aH − b1E1 − b2E2 − b3E3 − b4E4 − b5E5

=
a

2
(2H − E1 − E2 − E3 − E4 − E5)

+(
a

2
− b1)E1

+ · · ·

+(
a

2
− b5)E5.

Therefore, assume ci < 1/2, the homotopy type of each term and each connecting
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map is the same as the monotone case computed by [13] section 6.5. And we have the

weak homotopy equivalence Stab(C) ' Diff+(S2, 5).

Remark 5.1.6. If some ci ≥ 1/2, we expect the diagonal element (1, . . . , 1) in

π1(Symp(C)) = Z5 still maps to the generator of π0(Sympc(U)), but we won’t give

an explicit proof. Instead, there is an argument in Lemma 5.1.28 showing that the

generator in π0(Sympc(U)) is isotopic to identity in Symph for a given form without

size restriction on CP 2#5CP 2.

Pure braid group on sphere

By proposition 5.1.4, Stab(C) ' Diff+(S2, 5), which comes from the diffeomorphism of

the base 2H −E1 −E2 −E3 −E4 −E5 sphere fixing the five intersection points of the

exceptional spheres. Hence the right end of fibration (1.1) is:

Stab(C) ' Diff+(S2, 5) −−−−→ Symph −−−−→ C0 (5.2)

By Lemma 4.1.1, homotopically, C0 ∼= Jopen, which is connected. And we can write

down the homotopy long exact sequence of the fibration:

1→ π1(Symph(X,ω))→ π1(C0)
φ−→ π0(Diff+(S2, 5))→ π0(Symph)→ 1 (5.3)

Lemma 5.1.7. There are isomorphisms

π0(Diff+(S2, 5)) ∼= PB5(S
2)/〈τ〉 ∼= PB2(S

2 − {x1, x2, x3}),

where PB5(S
2) and PB2(S

2 − {x1, x2, x3} are the pure braid groups of 5 strings on S2

and 2 strings on S2 − {x1, x2, x3} respectively, and 〈τ〉 = Z2 is the center of the braid

group Br5(S
2) generated by the full twist τ of order 2.

It follows that Ab(π0(Diff(5,S2))) = Z5.
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Proof. The first identification comes from the homotopy fibration

Diff+(S2, 5)→ PSL(2,C)→ Conf(S2, 5),

and the Z2 is the image of

π1[PSL(2,C)]→ π1[Conf(S2, 5)] = Br5(S
2),

which is the center of Br5(S
2) generated by the full twist τ of order 2.

The second isomorphism follows from the direct sum decomposition (cf. the proof

of Theorem 5 in [16]),

PBn(S2) ' PBn−3(S2 − {x1, x2, x3})⊕ 〈τ〉.

Now we have Ab(π0(Diff+(S2, 5))) = Z5 since Ab(PB2(S
2−{x1, x2, x3})) = Z5 ([16]

Theorem 5).

We also recall the generating set and presentation of braid Bn(S2) and pure braid

PBn(S2) on the sphere. For details see [22] section 1.2 and 1.3.

Figure 5.1: The Artin generator σi and the standard generator Ai,j

Lemma 5.1.8. Bn(S2) admit the Artin presentation using Artin generators {σ1, · · · , σn−1},
where σi switches the ith point with (i+1)th point.

PBn(S2) admits a presentation using standard generators Ai,j , 1 ≤ i < j ≤ n. For

PBn−3(S
2−{x1, x2, x3}) ' PBn(S2)/Z2, the set {Ai,j , j ≥ 4, 1 ≤ i < j} is a generating
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set. And further, by Theorem 5 in [16] there are relations (Πj−1
i=1Ai,j)(Π

j
k=n+1Aj,k) = 1,

ensuring that we can further remove the generators A1,j.

And the following equation gives the standard generator of Pure braid group:

Aij = σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−1 (5.4)

Where one can think Ai,j as the twist of the point i along the point j, which

geometrically (see Figure 5.1) can be viewed as moving i around j through a loop

separating j from all other points.

Lemma 5.1.9. π0(Diff+(S2, 5)) = P5(S
2)/Z2 admit a minimal generating set

{A24, A25, A34, A35, A45}.

And any permutation of {1, 2, 3, 4, 5} gives another minimal generating set. In particu-

lar, perform {1, 2, 3, 4, 5} → {5, 4, 3, 2, 1}, we get

{A42, A41, A32, A31, A21}.

Reduced symplectic cone and walls

For CP 2#5CP 2, as described in section 2.1.5: Combinatorially, the normalized re-

duced cone is convexly generated by 5 rays {MO,MA,MB,MC,MD}, with 5 ver-

tices M = (13 ,
1
3 ,

1
3 ,

1
3 ,

1
3), O = (0, 0, 0, 0, 0), A = (1, 0, 0, 0, 0), B = (12 ,

1
2 , 0, 0, 0), C =

(13 ,
1
3 ,

1
3 , 0, 0),D = (13 ,

1
3 ,

1
3 ,

1
3 , 0); and these root edges corresponding to Lagrangian sim-

ple roos as follows, MO = H − E1 − E2 − E3, MA = E1 − E2, MB = E2 − E3,

MC = E3 − E4,MD = E4 − E5,

MO

MD

MCMBMA
D5

The open chamber in this case is a 5-dimensional polytope with the closure of reduced

cone in 2.1 of the CP 2#4CP 2 being a facet. A wall of codimension k is the interior of
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a facet of the closure of open chamber, where k many “>” made into “=”. And the

Lagrangian lattice of the wall W ΓL is given by removing the generating rays of the

wall W . Specifically, the k-faces are listed in the table 5.1.

Remark 5.1.10. Recall that any symplectic form ω is diffeomorphic to a reduced form

ωr and Symph(X,ω) is homeomorphic to Symph(X,ωr).

And further note that we have the following Cremona transform showing that a

reduced form satisfying some balanced condition is symplectormophic to a form that is

obtained by blowing up ball packing relative to RP 2 as in Lemma 5.1.2:

Lemma 5.1.11. Given a reduced form ω on CP 2#5CP 2, PD[ω] = H−c1Ei−· · ·−c5E5,

with c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5, if c3 < c4 + c5, then it is symplctomorphic to a form which

admit a relative packing as in the previous Lemma 5.1.2.

Proof. We do Cromena transform using H − E3 − E4 − E5:

h = 2H − E3 − E4 − E5, e1 = E1, e2 = E2,

e3 = H − E4 − E5, e4 = H − E3 − E5, e5 = H − E3 − E4.

We also have 2h− e1 − · · · − e5 = H − E1 − E2.

In the push forward manifold we choose the configuration

2H − e1 − e2 − e3 − e4 − e5

e1 e2 e3 e4 e5

which is indeed the following configuration in the original manifold
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H − E1 − E2

E1 E2

H − E4 − E5

H − E3 − E5

H − E3 − E4

Note that by [26], the above Cremona transform can be realized as a diffeomorphism

on CP 2#5CP 2 denoted by Φ, with the push forward symplectic form Φ∗ω. Denote the

basis of H2 of the push forward manifold (CP 2#5CP 2,Φ∗ω) by {h, e1, ·, e5}. And we

can easily verify the assumption of Lemma 5.1.2 thatΦ∗ω(h) > 2Φ∗ω(ei),∀i by checking

the following curves having positive area:

• h − 2e1 = 2H − 2E1 − E3 − E4 − E5 = (H − E1 − E3 − E4) + H − E1 − E5 has

positive area since the old form is reduced;

• For h− 2e2 we can apply the same argument as h− 2e1;

• h− 2e3 = 2H −E3−E4−E5− 2(H −E4−E5) = E4 +E5−E3 has positive area

from the assumption c3 < c4 + c5;

• h− 2e4 = 2H −E3−E4−E5− 2(H −E3−E5) = E3 +E5−E4 has positive area

because c3 ≥ c4;

• For h− 2e5 we can apply the same argument as h− 2e4.

Hence the proof.

Remark 5.1.12. In the previous Lemma 5.1.11, if one replace the assumption c3 <

c4 + c5 by c1 < c2 + c3 or c2 < c3 + c4, one may apply the corresponding Cremona
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transform(using H −E1 −E2 −E3, H −E2 −E3 −E4 respectively), to make the push

forward admit a ball packing relative to RP 2.

Hence one may state Lemma 5.1.11 as follows:

Lemma 5.1.13. We call a reduce form ω = (1|c1, c2, c3, c4, c5) on CP 2#5CP 2 with

c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5 balanced if c1 ≥ c2 + c3 , c2 ≥ c3 + c4 and c3 ≥ c4 + c5 not hold

simultaneously.

Any balanced reduced form ωb is diffeomorphic to a form admitting a ball packing

relative to RP 2.

5.1.2 A semi-toric Ball-swapping model and the connecting homomor-

phism

In this section, we prove that:

Proposition 5.1.14. Given CP 2#5CP 2 with symplectic form ω, such that PD[ω] =

H − c1Ei − · · · − c5E5 where there are at least 3 distinct values in {c1, · · · , c5} and

max{ci} < 1/2,
∑

i ci < 2, then Symph(CP 2#5CP 2, ω) is connected.

And because any balanced reduced symplectic form defined in Lemma 5.1.13 is

Cremona equivalent to a form satisfying the condition max{ci} < 1/2,
∑

i ci < 2. As a

corollary of 5.1.14, for any for in cases 3b to 5a in table 5.1, Symph(CP 2#5CP 2, ω) is

connected. In addition, some form in cases 1 to 3a are also covered by Corollary 5.1.17,

and the rest in cases 1 to 3a will be covered by Lemma 5.1.28 in the next section.

We first give a semi-toric model of ball-swapping relative to RP 2: From the Biran

decomposition we know CP 2 = RP 2 t U , where U = H4 \ Z∞, where H4 is the 4th

Hirzbruch surface with fiber area 1/2 and base area 2, and Z∞ is the infinity section.

And if we have 5 balls with pairwise distinct sizes a1, a2, · · · , a5 such that

ai < 1/2,
∑
i

ai < 2 (5.5)

there is a toric packing as in Figure 5.2, by [38]. Note that each B4(ai) ∩ {0} × C is a

large disk in B4(ai). Moreover, there is an ellipsoid Eij ⊂ U , such that Bi ∪ Bj ⊂ Eij ,
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ai aj aratas

D( 12 )

ω(C) = 2

Eij

RP 2

Figure 5.2: Standard toric packing and ball swapping in O(4)

and Eij is disjoint from the rest of the ball packings. We call this an (i, j)-standard

packing.

Next, we notice that when at least 2 elements from {ar, as, at} := {a1, a2, · · · , a5} \
{ai, aj} coincide, toric packing as in Figure 5.2 doesn’t exist. Nonetheless, one could

always slightly enlarge some of them to obtain distinct volumes satisfying equation (5.5),

then pack the original balls into the enlarged ones to obtain a standard packing.

And there is a natural circle action induced from the toric action, rotating the base

curve C, fixing the center of B4(ai). Denote the Hamiltonian of the circle action H. This

circle action clearly swaps the ball B4(ai) and B4(aj) and then place them back to their

original positions. When these two balls are blown-up, the corresponding ball-swapping

symplectomorphisms hence induce a pure braid generator Aij .

To make it compactly supported, one multiplies toH(r1, r2) = |r2|2 a cut-off function

η(z1, z2) such that We can cutoff H using the function η defined as following:

η(x) =



0, x ∈ Eij \ {
r21

2− ε− ar − as − at
+

r22
1

2
− ε
≤ 1/π},

1, x ∈ { r21
ai + aj

+
r22

1

2
− 2ε

≤ 1/π},
(5.6)

The resulting Hamiltonian η◦H has time-one flow equal identity outside the ellipsoid

in Figure 5.2 hence descends to a ball-swapping as in Definition 5.1.1. We call such a

symplectomorphism an (i, j)-model ball-swapping in O(4)#5CP 2 when Bi and Bj are

swapped. Consider the family of the compactly supported symplectomorphism, given

by the Hamiltonian t ◦ η ◦H for t ∈ [0, 1], the following lemma is immediate.
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Lemma 5.1.15. The (i, j)-model ball-swapping is Hamiltonian isotopic to identity in

the compactly supported symplectomorphism group of O(4)#5CP 2. Moreover, it in-

duces a diffeomorphism on the proper transform of C, which is the generator Aij on

π0(Diff+(S2, 5)).

Now we give the proof of

Proposition 5.1.16. Given CP 2#5CP 2 with symplectic form ω, such that PD[ω] =

H − c1Ei − · · · − c5E5 where there are at least 3 distinct values in {c1, · · · c5} and

max{ci} < 1/2,
∑

i ci < 2, then Symph(CP 2#5CP 2, ω) is connected.

Proof. Fix a configuration Cstd ∈ C0 in CP 2#5CP 2 with the given form ω. If we blow

down the five exceptional spheres, we get a ball packing in CP 2 with 5 balls, each Bi

centered at the corresponding point Pi on the sphere S2 of homology class 2H, with the

size determined by the form ω.

First note that there is a Lagrangian RP 2 away from the curve Q in Cstd of class

2H − E1 − · · · − E5 with the given symplectic form.

Blowing down the exceptional curves, we have a ball packing ι : Bl = B(cl) relative

to RP 2. Suppose ci > cj , we have the semi-toric (i, j)-standard packing ιs as defined

above. One may further isotope ι to ιs, by the connectedness of ball packing in [9]

Theorem 1.1. Clearly, from Lemma 5.1.15, this is a Hamiltonian diffeomorphism, fixes

all exceptional divisors from the 5 ball-packing, and induces the pure braid generator

Aij on C.

Take the isotopy $t from $ij to identity, then $t(ei) gives a loop in C0. This shows

that the generator Aij is in the image of φ for all i, j.

And finally, we verify that if there are no less than 3 distinct values in {c1, · · · c5},
then a generating set as in Lemma 5.1.9 is contained in the image of φ and hence

Symph is connected: we can do a permutation on {1, 2, 3, 4, 5} such that c1 > c2 > c3.

If c4 /∈ {c1, c2, c3}, then clearly, {A12, A13, A14, A23, A24}, which is a generating set in

Lemma 5.1.9, is contained in the image of φ; and if c4 ∈ {c1, c2, c3}, suppose c4 = ck,

then we do a permutation of set {1, 2, 3, 4} exchanging 3 with k, then we have the same

generating set {A12, A13, A14, A23, A24} in the image of φ.



92

Indeed, one is already able to prove the following by performing a Cremona transform

as in Lemma 5.1.11:

Proposition 5.1.17. Given (CP 2#5CP 2, ω), let ω be a balanced reduced form. If there

are more than 8 symplectic -2 sphere classes, then Symph is connected.

Proof. It suffices to consider only reduced forms, by Remark 5.1.10. We refer to table

5.1 for any reduced form ω = (1|c1, · · · , c5), where c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5. And the

assumptions on the form means we only need to deal with balanced form on any k−face

for k ≥ 2 and edges MO,MB,MC,MD.

• For any k−face, k ≥ 3: Because the form is balanced, by Lemma 5.1.13, it admit

a ball packing relative to RP 2 by Lemma 5.1.11 and 5.1.2. Note that the form

has at least 3 district values in c1, · · · , c5, then after pushing forward there are

at least 3 distinct values among area of exceptional spheres. Hence by Lemma

5.1.14, Symph is connected.

• For a 2−faces or edge where O is not a vertex of this 2−faces, thenλ = 1, and there

is a composition of Cremona transform by H−E1−E2−E5 and H−E1−E3−E4

such that

h = 3H − 2E1 − E2 − E3 − E4 − E5, e2 = H − E1 − E2,

e3 = H − E1 − E3, e4 = H − E1 − E4,

e5 = H − E1 − E5, e1 = 2H − E1 − · · · − E5.

We also have 2h− e1 − · · · − e5 = E1 and obtain the following configuration:

= E1

2h− e1 − · · · − e5

e2 = H − E1 − E2

e3 = H − E1 − E3

e4 = H − E1 − E4

e5 = H − E1 − E5e1 = 2H − E1 − · · · − E5

And we can easily see that the push forward form satisfies the following: there are
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3 distinct values for exceptional spheres, because

ω(2H − E1 − · · · − E5) > ω(H − E1 − E5) > ω(H − E1 − E2);

and each ei has area less than 1/2 of h, this is because e1 = 2H − E1 − · · · − E5

always has the largest area among {e1, · · · , e5}. And the curve symplectic area of

h− 2e1 is :

ω(3H − 2E1 − E2 − E3 − E4 − E5)− 2ω(2H − E1 − · · · − E5) > 0.

• For 2−faces where O is a vertex, then there there are 4 cases, MOA,MOB, MOC,

MOD:

– For MOA,MOB, C and D are not vertices: the form has c3 = c4 = c5, and

we can use the Cremona transform by H − E1 − E2 − E3 such that

h = 2H − E1 − E2 − E3, e4 = E4, e5 = E5,

e3 = H − E1 − E2, e2 = H − E1 − E3, e1 = H − E2 − E3.

We also have 2h − e1 − · · · − e5 = H − E4 − E5 and obtain the following

configuration:

= H − E4 − E5

2h− e1 − · · · − e5

e5 = E5 e4 = E4

e3 = H − E1 − E2

e2 = H − E1 − E3

e1 = H − E2 − E3

And we can easily see that the push forward form satisfies the following:

there are 3 distinct values for exceptional spheres, because

ω(H − E2 − E3) > ω(H − E1 − E2) > ω(E5);
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and each ei has area less than 1/2 of h.

– For MOC, MOD, B is not a vertex: the form has c2 = c3 and we can do

Cremona transform by H − E2 − E3 − E4 such that

h = 2H − E2 − E3 − E4, e1 = E1, e5 = E5,

e2 = H − E3 − E4, e3 = H − E2 − E4, e4 = H − E2 − E3.

We also have 2h − e1 − · · · − e5 = H − E1 − E5 and obtain the following

configuration:

= H − E1 − E5

2h− e1 − · · · − e5

e1 = E1 e5 = E5

e2 = H − E3 − E4

e3 = H − E2 − E4

e4 = H − E2 − E3

And we can easily see that the push forward form satisfies the following:

there are 3 distinct values for exceptional spheres, because

ω(H − E3 − E4) > ω(H − E2 − E3) > ω(E5);

and each Ei has area less than 1/2 of h.

• For case MO, π0(Symph) is trivial:

Firstly, we apply a Cremona transform for the two case to obtain the following:

= H − E1 − E2

2h− e1 − · · · − e5

e1 = E1 e2 = E2

e3 = H − E4 − E5

e4 = H − E3 − E5

e5 = H − E3 − E4

Then, in either root edges, we have two exceptional spheres with area a1 and the
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other three with area a2 where a1 6= a2.

Hence up to a permutation of index in {1, · · · , 5}, we obtain a set of braid gener-

ators {A14, A24, A34, A15, A25, A35}.

By Proposition 7 in [15], Diff+(S2, 5) and P2(S
2 − 3 points) identified and there

are surface relations

(Πj−1
i=1Ai,j)(Π

m+n
k=j+1Aj,k) = 1.

In our case m = 2, n = 3 hence let j = 4 we have A14A24A34A45 = 1. This

means the above set generators A45. And hence we obtain a minimal generating

set {A14, A24, A45, A15, A25}.

It follows from Theorem 5.1.14 that Symph is connected from cases MB to

MOABCD and case MO in table 5.1 with the balanced condition.

5.1.3 Forget one strand map when ΓL = D4

In this section we prove when ω ∈ MA which is labeled by D4, then π0(Symph) is

π0(Diff+(S2, 4)) = P4(S
2)/Z2:

Proposition 5.1.18. Let X = CP 2#5CP 2 with a reduced symplectic form ω on

MA where there are 8 symplectic -2 sphere classes, π0(Symph) is π0(Diff+(S2, 4)) =

P4(S
2)/Z2.

Proof. Note that on MA one have the ω−area of H,E1, · · · , E5 being 1, c1, · · · , c5 and

c1 > c2 = c3 = c4 = c5, and c1 + c2 + c3 = 1.

We can apply the Cremona transform to a reduced form on MA as in table 5.1 to

obtain the following:

2h−
∑

i ei = E5

e1 = H − E1 − E5

e2 = H − E2 − E5

e3 = H − E3 − E5

e4 = H − E4 − E5

e5 = 2H − E1 − · · · − E5
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Note that the new basis h, e1, · · · , e5 has symplectic area

ω(h) > 2ω(ei), ω(e1) < ω(e2) = · · · = ω(e5), w(h) = ω(e1) + ω(e2) + ω(e3).

In addition, the following two property on the configuration is critical in our proof.

And this kind of configuration satisfying 1),2) exists only when the form is on MA, i.e.

c1 > c2 = c3 = c4 = c5, and c1 + c2 + c3 = 1.

1)The curve 2h−
∑

i ei in {h, ei} basis, which is the curve E5 in the {H,Ei} basis, has

the minimal area among all exceptional spheres. 2)There are 4 equal-area exceptional

spheres (e2, e3, e4, e5) intersecting 2h−
∑

i ei each at a single point.

Consider the universal family of 5-point blow up of CP 2 with a given symplectic

form on MA. We regard the 5-blow up as first blow up CP 2 at a point p1 = [1 : 0 : 0]

of size ω(e1), and then blow up another 4 points {p2, p3, p4, p5} in general position (no

two collide, no three co-linear) of size ω(e2). And the moduli of 4 points {p2, p3, p4, p5}
in CP 2#CP 2 can be identified with Conford4 (CP 1)/PSL2(C) in the following way:

any choice of a 4-tuple {p2, p3, p4, p5} in CP 2#CP 2 uniquely determines a CP 1 in

class 2h − e1, and any two curves in 2h − e1 can be identified using a holomorphic

automorphism of CP 2#CP 2.

The symplectic form ω can be viewed as induced Fubuni-Study form from some

projective embedding of the bundle over B = Conford4 (CP 1)/PSL2(C) with fiber

CP 2#5CP 2 in to some CPN . Note that the blow up size at the 4 points {p2, p3, p4, p5}
are equal. By Picard-Lefschetz theory, the monodromy of the family of blowups over

Conford4 (CP 1)/PSL2(C) gives the map:

α : Conford4 (CP 1)/PSL2(C) 7→ BSymph.

Then we consider the action of Symph on space of J-holomorphic curve Q in class

2h − e1 − · · · − e5 = E5, which is contractible since it’s homotopic to Jω. We have a

well defined (proof given in Lemma 5.1.22) forgetful map if ω(E1) ≤ 2ω(E2):

β : BSymph = Jω/Symph 7→ Conford4 (CP 1)/PSL2(C);
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if ω(E1) > 2ω(E2):

β : (Jω −X4)/Symph 7→ Conford4 (CP 1)/PSL2(C),

where X4 has codimension 4 in Jω, see Lemma 3.4.1.

And we claim that the composition of β ◦ α gives an isomorphism of fundamental

group Conford4 (CP 1)/PSL2(C). And hence there is a surjective map β∗ : π1(BSymph)

to π1(Conf
ord
4 (CP 1)/PSL2(C)), which is P4(S

2)/Z2. These will be proved in Lemma

5.1.22.

In addition, we proved π1(BSymph) is a quotient of P4(S
2)/Z2: For case MA in

table 5.1, Lemma 5.1.15 and 5.1.11 tells us that there is a set π1(S
2 − {p2, p3, p4, p5})

in the image of the connecting homomorphism φ in sequence

1→ π1(Symph(X,ω))→ π1(C0)
φ−→ π0(Diff+(S2, 5))→ π0(Symph)→ 1. (5.7)

In [8], we have the short exact sequence of the forgetting one strand map:

0→ π1(S
2 − {p2, p3, p4, p5})→ PB5(S

2)/Z2 → PB4(S
2)/Z2 → 0.

And hence we know that π0(Symph) is a quotient of P4(S
2)/Z2 and there is a surjective

homomorphism γ : P4(S
2)/Z2 → π0(Symph).

And (Pure or full)Braid groups (on disks or on spheres) are Hopfian(cf. [22]) or see

Lemma 5.1.23:

Now let G = P4/Z2, which is Hopfian, and H = π0(Symph) for the given symplectic

form with 8 ω− symplectic -2 sphere classes. G and H are groups, and there is a

surjective homomorphism β∗ : H → G, and a surjective homomorphism γ : G → H.

Then β∗ ◦ γ : G
γ→ H

β∗→ G is a surjective homomorphism because it is the composition

of two surjections. Then we have an epimorphism of G which has to be isomorphism

because G is Hopfian. Then the map γ : G → H has to be injective. Hence it’s both

injective and surjective. And G and H are isomorphic, which means π0(Symph) =

π1(BSymph) = P4(S
2)/Z2.

The above is the main argument, and Lemma5.1.22 is given below: First we assume
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the reduced form (before Cremona transform) has ω(E1) ≤ 2ω(E2), i.e. the vector

(1|c1, · · · , c5) has c1 ≤ 2c2. And show that β is nicely defined. And then we show that

without assumption ω(E1) ≤ 2ω(E2), β
∗ on π1 level is the same. In order to do this we

need Lemma 5.1.19 and Lemma 5.1.20.

When ω(E1) ≤ 2ω(E2) there is no symplectic sphere whose self-intersection is less

than -2. The reason is as follows: by adjunction, any embedded sphere either has

non-negative coefficient on H or is (k + 1)E1 − kH −
∑

j Ej ; by the area restriction,

any symplectic sphere class must have non-negative coefficient on H; thus the negative

spheres can be either Ei −
∑

j Ej , H −
∑

iEi or 2H −
∑5

i=1Ei; again by the area

restriction one can exclude self-intersection less than -2 curves. Then we consider the

possible degeneration of curves in class e2, e3, e4, e5 into stable curves as Gromov limit.

And we also have

Lemma 5.1.19. If there’s no component having self-intersection less than -2, then the

stable curve intersect the base curve Q once at a single point.

Proof. By adjunction, any -2 curve have coefficient 0 or -1 on any class Ei. Write them

back into the basis of H,E1, · · · , E5, we have the identification ei = H−Ei−E5, if i =

2, 3, 4 and e5 = 2H −
∑5

i=1Ei.

• For A = H − Ei − E5, assume A =
∑

k Ak where each component Ak is

embedded. Because each Ak has non-negative coefficient on H, there must

be exactly one curve A1 = H −
∑

mEm and other curves Ei −
∑

j Ej . On

the one hand, if there are more than one curve have -1 on E5, then either

Ap = Eip −
∑

jp
Ejp − E5, Aq = Eiq −

∑
jq
Ejq − E5 such that Ap · Aq ≤ −1 < 0,

contradiction; or A1 = H −
∑

mEm − E5, Ar = Eir −
∑

jr
Ejr − E5 and

A1 · Ar ≥ 0 means A1 · Eir = 1 where either ir ∈ 2, 3, 4 such that ω(Ar) ≤ 0

or ir = 1 such that ω(A1) ≤ 0, contradiction. This means the stable curve

has at most one component Ak such that Ak · E5 = 1. On the other hand,

because A = H − Ei − E5 and A · E5 = 1, there is at least one curve Ak such

that Ak ·E5 = 1. Hence the stable curve intersect Q exactly once at a single point.

• For A = 2H −
∑5

i=1Ei, assume A =
∑

k Ak where each component Ak is embed-

ded. There must be exactly two curves A1 = H −
∑

mEm, A2 = H −
∑

nEn and
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other curves Ei−
∑

j Ej . From the above case we know if there are more than one

curve have -1 on E5, then must be A1 = H−
∑

mEm−E5 A2 = H−
∑

nEn−E5.

A = 2H−
∑5

i=1Ei so that A ·E1 = 1, at least one of A1, A2 intersect E1 positively.

Without loss of generality, we can assume A1 · E1 = 1, then we have ω(A1) ≤ 0,

contradiction. This means that the stable curve has at most one component Ak

such that Ak · E5 = 1. On the other hand, because A = 2H −
∑5

i=1Ei so that

A ·E5 = 1, there is at least one curve Ak such that Ak ·E5 = 1. Hence the stable

curve intersect Q exactly once at a single point.

Lemma 5.1.20. If ω(E1) ≤ 2ω(E2), then Symph(X,ω) acting freely on space Jω, and

hence BSymph = Jω/Symph.

Proof. Look at configuration

E5

H − E1 − E5

H − E2 − E5

H − E3 − E5

H − E4 − E5

2H − E1 − · · · − E5

E1

H − E2 − E3

H − E2 − E4

H − E3 − E4

p

Both E5 and H−E1−E5 always have J-holomorphic simple representatives because
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they both have minimal area. And each of them intersects 5 exceptional spheres.

And with assumption ω(E1) ≤ ω(E2) we have Lemma 5.1.19, any exceptional sphere

intersects E5 or H−E1−E5 at one single point if not empty. In particular, the point p is

geometric intersection of E5 ∩ (H −E1−E5). Suppose some element i in Symph(X,ω)

fix some J , then it’s an isometry. And this isometry i fixes 5 intersection points on

sphere E5 or H−E1−E5 because the exceptional sphere(or their stable curve) are fixed

as a set. Hence this action i restricting on sphere E5 or H−E1−E5 is identity because

isometry of sphere fixing more than 3 points is an identity. Hence on the tangent space

of X = CP 2#5CP 2 at p, i is id. Then exponential map gives the action i itself is

identity in Symph(X,ω). This means the action of Symph(X,ω) on Jω is free. Because

Jω is contractible, we have the classifying space BSymph = Jω/Symph.

Lemma 5.1.21. If ω(E1) > 2ω(E2), the action of Symph on Jω −X4 is free.

Proof. By Lemma 3.1.8, there is an action of Symph on Jω −X4.

Then we follow the above method as in Lemma 5.1.20 to complete the proof. Take

the same configuration as in Lemma 5.1.20. Note that the curves in both classes E5 and

H −E1−E5 always have J-holomorphic simple representatives because they both have

minimal area, which means the point p is still there as a geometric intersection point.

The differences is that the other classes could be represented by a stable curve.

And because we remove X4 from Jω, the stable curve can only have embedded com-

ponents whose square is larger than or equal to −2. Note that in any decomposition of

each of the other 8 classes, their algebraic intersection is always a geometric intersection,

which is fixed by the action of Symph.

Suppose some element i in Symph(X,ω) fix some J , then it’s an isometry. Hence this

action i restricting on sphere E5 or H −E1 −E5 is identity because isometry of sphere

fixing more than 3 points is an identity. Hence on the tangent space of X = CP 2#5CP 2

at p, i is id. Then exponential map gives the action i itself is identity in Symph(X,ω).

This means the action of Symph(X,ω) on Jω is free.
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Lemma 5.1.22. The map β is well defined: if ω(E1) ≤ 2ω(E2):

β : BSymph = Jω/Symph 7→ Conford4 (CP 1)/PSL2(C);

if ω(E1) > 2ω(E2):

β : (Jω −X4)/Symph 7→ Conford4 (CP 1)/PSL2(C),

where X4 has codimension 4 in Jω, see Lemma 3.4.1. And the composition of β ◦ α
always induces a surjective map β∗ : π1(BSymph) to π1(Conf

ord
4 (CP 1)/PSL2(C)),

which is P4(S
2)/Z2.

Proof. If ω(E1) ≤ 2ω(E2): we proved that BSymph = Jω/Symph in Lemma 5.1.20.

And we define β by sending J ∈ Jω to the points {e2(J) ∩Q(J), e3(J) ∩Q(J), e4(J) ∩
Q(J), e5(J)∩Q(J)}, where ei(J) denote the image of stable curve in homology class ei

for the given J ; and Q(J) denote the image of embedded J-holomorphic curve in class

2h− e1 − · · · − e5 = E5 for the given J . This gives the map as stated:

β : BSymph = Jω/Symph 7→ Conford4 (CP 1)/PSL2(C).

To obtain a surjective map β∗ : π1(BSymph) to π1(Conf
ord
4 (CP 1)/PSL2(C)), we just

need to consider the composition of β ◦α : it is an isomorphism of space Conford4 (CP 1).

Hence the induced map on homotopy groups are isomorphic. This means the map

β∗ : π1(BSymph)→ π1(Conf
ord
4 (CP 1)/PSL2(C)) is surjective.

Then we deal with the case when ω(E1) > 2ω(E2): this case the β cannot be defined

as above because the stable curve may intersect Q at more than 1 points. However, we

can consider space Jω − X4 as in Lemma 3.4.1, and there’s no curve whose square is

less than -2. Then we consider the same configuration as in the proof of Lemma 5.1.20,

and Lemma 5.1.19 tells us the intersection points of homology classes can be realized

as geometric intersections (of stable curves). This mean the argument in Lemma 5.1.20

works here and give us a free action of Symph(X,ω) on Jw−X4. So there is a fibration

Symph(X,ω)→ (Jw −X4)→ (Jw −X4)/Symph(X,ω),
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and the associated LES

π1(Jω −X4)→ π1((Jw −X4)/Symph)→ π0(Symph)→ π0(Jω −X4).

Note that π0(Jω − X4) is trivial. This means the π1((Jw − X4)/Symph(X,ω)) is the

same as π1(BSymph). We can think of β ◦ α : where β defined as

(Jω −X4)/Symph 7→ Conford4 (CP 1)/PSL2(C).

And β ◦ α restricted to (Jω − X4)/Symph ⊂ BSymph is an isomorphism on π1

of Conford4 (CP 1)/PSL2(C) And we still have a surjective homomorphism from

π1(BSymph) to π1(Conf
ord
4 (CP 1)/PSL2(C))=P4(S

2)/Z2. Hence we proved the the

same claim as when we put the assumption ω(E1) ≤ 2ω(E2).

And we also write a proof of the fact known to experts of geometric group theory:

Lemma 5.1.23. Pure and full Braid groups (on disks or on spheres) are Hopfian.

Proof. • On disks: Bigelow and Krammer showed that (full) braid groups on disks

are linear; and by a well-known result of Malćev, finitely generated linear groups

are residually finite, and finitely generated residually finite groups are Hopfian.

Residual finiteness is subgroup closed, hence pure braid group on disks as the

subgroup of full braid is residually finite, and it is finitely generated hence Hopfian.

• On sphere: V. Bardakov shows sphere full braid groups and mapping class groups

of the n-punctured sphere (MCG(S2, n)) are linear. The rest argue goes as above.

In particular, P4/Z2 = π0(Diff(S2, 4)) is MCG(S2, 4) and in the meanwhile P4/Z2

is finitely generated, hence P4/Z2 is Hopfian.

Then we complete the proof of Proposition 5.1.18.

Remark 5.1.24. One can give an alternative proof of Lemma 5.1.19 using Lemma 6.1

in [39].
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Remark 5.1.25. Indeed, the results in section 5.2 can be interpreted using proof of

Proposition 5.1.18: one need to forget more than two strands and hence the resulting

π0(Symph(X,ω)) is the trivial group.

Remark 5.1.26. If the reduced form is not balanced, then c1 ≥ c2 + c3 , c2 ≥ c3 + c4

and c3 ≥ c4 + c5, then this case is covered by the next Lemma 5.1.28. Note that non

balanced reduced form can only appear in the 5-face, 4-faces or MABC of the reduced

cone as in table 5.1. And any 2-face and 3-face other than MABC are all sets of

balanced symplectic forms. The idea of dealing with non-balanced form is to look at

their projection to a 2-face or a 3-face which does not contain C or D as a vertex.

Remark 5.1.27. Note that when a form is on MA, the manifold can be equipped with

a symplectic G-conic bundle structure (see [10] section 2.1). The non-trivial minimal

finite groups given in Theorem 1.7 of [10] which act symplectically and homological

trivially can all be realized as finite subgroups of spherical pure braid groups. One

may ask the following questions: Is each finite group action which is induced by a

Hamiltonian action non-minimal (i.e. obtained by blowing up of some action)? And

if the first question has positive answer, then can one use the SMC to classify all the

minimal finite group actions?

5.1.4 Torelli Symplectic mapping class group for a general form

In this section, we deal with any symplectic form ω on X = CP 2#5CP 2, and show that

if there are more than eight symplectic -2 spheres, then Symph(M,ω) is connected.

The proof of this for arbitrary reduced form is almost done(see Remark 5.1.26 )

in the previous section, one only need to consider when c1 ≥ c2 + c3 , c2 ≥ c3 + c4 and

c3 ≥ c4 + c5, which is covered by the following Lemma 5.1.28:

Lemma 5.1.28. Given reduced form ω = PD[H − c1E1 − c2E2 − c3E3 − c4E4 − c5E5]

with c1 ≥ c2 + c3, c2 > c3 ≥ c4 ≥ c5, then Symph(CP 2#5CP 2, ω) is connected.

Proof. X = CP 2 with [ω] = PD[htH]. Throughout the proof we compare two symplec-

tic forms on CP 2#5CP 2:

• ωs = (1|c1, c2, c3, c4, c5) where
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PD[ωs] := H − c1E1 − c2E2 − c3E3 − c4E4 − c5E5,

• ωl = (1|c1, c2, c3, c3, c3) where

PD[ωl] = H − c1E1 − c2E2 − c3E3 − c3E4 − c3E5,

which can be obtained from ωs by enlarging the area of E4, E5 to c3.

Indeed ωs is the projection of ωl to a 2-face or a 3-face which does not contain C or

D as a vertex. We verify that with the given assumption, the vector (1|c1, c2, c3, c3, c3) is

reduced, and it is a symplectic form: because it pair Ei, H−Ei−Ej and 2H−E1 · · ·E5

are positive, for the last case, 2−
∑

i ci = (1− c1 − c2 − c3) + (1− c3 − c3) > 0.

And from reduced condition 1 ≥ c1 + c2 + c3, ωl(H − E1 − E2) ≥ ωl(E3); together

with given the assumption c1 ≥ c2 + c3, we know c3 < 1/3. And hence we know that

ωl(2H − E1 − · · · − E5)− ωl(E3) = (1− c1 − c2 − c3) + (1− c3 − c5 − c3) > 0. Hence

min{ωl(Ei), ωl(H − Ei − Ej), ωl(2H − E1 − · · · − E5)} = c3 (5.8)

Hence given the form ωl, c3 is the smallest area of all 16 exceptional curves.

There is a ball packing ιl :
∐5
i=1B

′(i) → X, with image Kl, such that

V ol(B′4) = V ol(B′5) = c3, V ol(B
′
i) = ci when i = 1, 2, 3.

Note that there is a packing ιs :
∐5
i=1B(i) → X, with image Ks ⊂ Kl, such

that V olBi = B′i when i = 1, 2, 3 and B4 ⊂ B′4, B5 ⊂ B′5, with volume

V ol(B4) = c4, V ol(B5) = c5.

Blowing up ιs is the form ωs which is Poincaré dual to (1|c1, c2, c3, c4, c5) with

c1 > c2 > c3 ≥ c4 ≥ c5 in our assumption, and blowing up ιl one get the form ωl

Poincaré dual to (1|c1, c2, c3, c3, c3). This ωl is a balanced reduced form. Hence by

Lemma 5.1.17 and 5.1.11, Symph(ωl) is connected.

Then we will derive the connectedness of Symph(ωs) from Symph(ωl): We first blow

up the balls B′1, B
′
2, B

′
3, and denote the symplectic manifold (X,ω123 (refered to as X
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below). By Lemma 2.3 in [24], the two groups are homotopy equivalent:

Symph(Xl, E
′
4, E

′
5) ' Symph(X,B′4, B

′
5).

Here Xl is the blow up of X by B′4, B
′
5, and Symph(Xl, E

′
4, E

′
5) is the subgroup of

Symph(ωl) fixing E′4, E
′
5. Note that we have a fibration(because of the transitive action,

same as 1.1)

Symph(Xl, E
′
4, E

′
5)→ Symph(Xl, ωl)→ El,

Where El is the space of exceptional spheres E′4, E
′
5. Recall the area of E′4 and E′5

is c3 and hence there is no exceptional curve with smaller area as computed in (5.8).

There is no embedded pseudo-holomorphic curve with positive coefficient on E′4, E
′
5.

Hence the space El is contractible and this means Symph(Xl, E
′
4, E

′
5) is connected. And

Symph(X,B′4, B
′
5) is connected.

Now we consider the blow up of ιs and the configuration Cs

2H − E1 − E2 − E3 − E4 − E5

E1 E2 E3 E4 E5

BecauseB4 ⊂ B′4, B5 ⊂ B′5, Symph(X,B′4, B
′
5) is a proper subgroup of Symph(X,B4, B5).

Because of Lemma 2.3 in [24], the following map given by blowing up B4, B5 is a home-

omorphism: Symph(X,B4, B5)
Bl→ Symph(Xs, E4, E5) , where Xs is the blow up of X

by B4, B5, and Symph(Xs, E4, E5) is the subgroup of Symph(ωs) fixing E4, E5.

Hence we proved that there is a proper subset Symp′h in Symph(ωs) which is the

image of Symph(X,B′4, B
′
5) under the map Symph(X,B4, B5)

Bl→ Symph(Xs, E4, E5).

One can think this subset fixes small neighborhoods of E4 and E5 and acting freely in

the complement of the neighborhoods. It is connected because it is a continuous image

of a connected domain, and it contains identity because the image of identity element of

Symph(X,B′4, B
′
5) is identity in Symph(ωs). And it can move around the intersection

points of pi := Ei ∩ 2H − E1 − · · · − E5.
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In particular, in Symph(X,B′4, B
′
5) ⊂ Symph(X,B4, B5), by Proposition 5.1.4, we

can move B1, B2, B3 around each other and we can move each B1, B2, B3 around B4, B5,

and hence the projection from this subset Symp′h to π0(Diff+(S2, 5)) contains the follow-

ing: {A12, A13, A14, A15, A23, A24, A25, A34, A35}, where Aij means move pi around pj , as

defined before. And this contains a minimal generating set {A12, A13, A14, A23, A24} or

{A23, A24, A25, A34, A35} (the same as in 5.1.9). Hence we proved that in Symph(Xs, ωs),

we can find a subset Symp′h in the identity component, whose projection to Diff+(S2, 5)

contains a minimal generating set {A12, A13, A14, A23, A24}. This means the generating

set is contained in the image of the connecting homomorphism. And hence the whole

group π0(Diff+(S2, 5)) is in the image of the connecting homomorphism.

Finally, we deal with Sympc(Us), where Us = Xs \ Cs. Because both Us and

U ′l = Xl \ (Cl) are biholomorphic to the complement U of a conic in CP 2. Also note

that (Us, ωs) is symplectomorphic to (CP 2− 2H) \Ks and (Ul, ωl) is symplectomorphic

to (CP 2 − 2H) \ Kl. By [13] section 6.5, as a stein U domain, U has a symplectic

completion which is T ∗RP 2 such that all critical points of the exhausting function are

supported on U . And we can Consider U as a complex manifold, the form on Us gives a

finite type plurisubharmonic function whose critical points are in (CP 2−2H)\Ks. And

the form on Ul gives a finite type Stein structure with critical points in (CP 2−2H)\Kl.

The natural inclusion (CP 2 − 2H) \Kl ↪→ (CP 2 − 2H) \Ks induces a weak homotopy

equivalence between Sympc(Us) and Sympc(Ul), by [13] Proposition 15. This means

the induced map is an isomorphism between π0[Sympc(Us)] and π0[Sympc(Ul)]. Hence

pick any connected component of Sympc(Us), there is an element φl supported on

(CP 2 − 2H) \Kl. By connectedness of Symp′h, φl is isotopic to identity. This means

the chosen connected component is in the identity component of Sympc(Us).

And hence we have the concluding proposition 5.1.29 about the connectedness of

Symph for generic symplectic form:

Proposition 5.1.29. Given (CP 2#5CP 2, ω), with any form ω, then if there are more

than 8 symplectic -2 sphere classes, then Symph is connected.

Proof. If the form is reduced, then Proposition 5.1.17 and Lemma 5.1.28 cover it.
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And for a non-reduced form which has more than eight symplectic -2 spheres, it is

diffeomorphic to a reduced form having the same number of symplectic -2 spheres, by

remark 5.1.10. And further, diffeomorphic forms have homeomorphic symplectomor-

phism group. Hence Symph is connected for any form with more than eight symplectic

-2 spheres.

Following from [33] that Symp(X,ω) can realize any homological action preserving

the canonical class, we have

Corollary 5.1.30. If there are more than 8 symplectic -2 sphere classes, then

π0(Symp(X,ω)) is the homological action, which is a subgroup of W (D5)(the Weyl

group of root system D5).

Remark 5.1.31. As implicated in [52] and [13], in the monotone case(case 8 in tabel

5.1), any i, j, Ei has the same area as Ej , then in contrast against theorem 5.1.14,

the swapping of two ball of the same size is not isotopic to identity, and it is a set

of generator of π0(Symp(X,ω)) that satisfying the braid relation. One can further

see from the fact that π0(Symp(X,ω)) = Diff+(S2, 5) that square Lagrangian Dehn

twists provide another set of generators of π0(Symp(X,ω)) that satisfying the braid

relation. For the relation of the two sets of generators: the ball swapping generator Aij

is compactly supported on a domain contain Ei and Ej , while the square Lagrangian

Dehn twists along Ei−Ej is compactly supported on a neighborhood of Ei−Ej . Hence

one may expect the two generators to be isotopic.

Remark 5.1.32. In [39] Remark 1.11, an approach to establish the connectedness for

Symph by deforming Lagrangian Dehn twists to symplectic Dehn twists was outlined

by Dusa McDuff, when the form has 5 distinct blow-up sizes and each slightly smaller

than 1/3.

Corollary 5.1.33. One can see that for any form ω except ω on edge MA and the

monotone point M in table 5.1, any square Lagrangian Dehn twist is isotopic to identity

because Symph is connected.This fact can be applied to compute Quantum cohomology

of the given form on X = CP 2#5CP 2:
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Together with Corollary 2.8 in [52], we have QH∗(X)/Il is Frobenius for any La-

grangian L for a given form in the cases above, where Il is the ideal of QH∗(X) generated

by the Lagrangian L.

5.1.5 Fundamental group and topological persistence of Symp(X,ω)

Now we consider the rank of π1(Symph(X,ω) when For a given form ω in table 5.1,

more than 8 symplectic -2 spheres implies the connectedness of Symph, and we have

the following:

Lemma 5.1.34. Let X = CP 2#5CP 2 with reduced symplectic form that can be nor-

malized to be ω = (1|c1, c2, c3, c4, c5) such that ci < 1/2. If π0(Symph) is trivial, then

there is a lower bound N − 5 of the rank of π1(Symph(X,ω), where N is the number of

ω-symplectic spheres with self intersection -2.

Proof. For a symplectic form that can be normalized to (1|c1, c2, c3, c4, c5) with ci < 1/2,

since Symph is assumed to be connected, by Proposition 5.1.4, we have the exact

sequence

1→ π1(Symph(X,ω))→ π1(C0)
φ−→ π0(Diff+(S2, 5))→ 1 (5.9)

We consider the abelianization of this exact sequence. Since the abelianization functor

is right exact and π1(Symph(X,ω) is abelian, we have the induced exact sequence

π1(Symph(X,ω))→ Ab(π1(C0))
f−→ Z5 → 1 (5.10)

Since Symph is assumed to be connected, by Lemma 3.4.2, the number of generator of

H1(Jopen) = Ab(π1(C0)) is the same as the number N of -2 symplectic spheres listed as

above. Statement a) follows immediately.

Remark 5.1.35.

• When the reduced form is not balanced, then push forward this form using any

diffeomorphism to obtain a push forward form (λ|c1, c2, c3, c4, c5), there are always
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some ci ≥ 1/2λ. This case Stab(C) might be homotopic to Diff+(S2, 5) or the

extension of Diff+(S2, 5) by Z, see Remarks 5.1.6. This case sequence 5.10 becomes

π1(Symph(X,ω))→ Ab(π1(C0))
f−→ Z6 → 1 (5.11)

where Z6 comes from abelianization of 0→ Z→ π0(Stab(C))→ Diff+(S2, 5)→ 0.

And we obtain N − 6 as the lower-bound.

• If Torelli SMC is non-trivial for a non-monotone symplectic form, then it has to

be on MA. We first assume ci < 1/2 and denote this form ωa: And using the

same argument as in Lemma 5.1.34, we have

1→ π1(Symph(X,ωa))→ π1(C0)→ Im(φ) = π1(S
2 − {4 points}))→ 1 (5.12)

We consider the abelianization of this exact sequence. Since the abelianization

functor is right exact and π1(Symph(X,ωa) is abelian, we have the induced exact

sequence

π1(Symph(X,ωa))→ Ab(π1(C0))
f−→ Z3 → 1. (5.13)

And hence we obtain a lower bound on for a form ωa on MA, rank of

π1(Symph(X,ωa)) ≥ 5. While without assumption we obtain π1(Symph(X,ωa) ≥
4.

• And we believe that Stab(C) can be made precise to be Diff+(S2, 5) but could

not do this currently due to a technicality. And the then lower bound could be

strengthen as N − 5 with the same proof, and hence it is the lower-bound of rank

π1(Symph(CP 2#5CP 2)) when Symph is connected.

On the other hand, [39] gives approach to obtain the upper-bound of π1(X,ω), where

M is a symplectic rational 4 manifold. We can follow the route of Proposition 6.4 in

[39] to give a proof of the following result, generalizing Dusa’s Corollary 6.9:

Proposition 5.1.36. Let (X,ω) be CP 2 or its blow up at several points with a given

reduced form, (X̃k, ω̃ε) be the blow up of X at k points with different small size( less than
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any blow up size of X), then the rank of π1(Symph(X̃k)) can exceed π1(Symph(X)) at

most rk + k(k − 1)/2, where r is the rank of π2(X).

Proof. This is based on the proof of Corollary 6.9 and Proposition 6.4,6.5 in [39]: One

need to argue that the exceptional sphere Ek in X̃k with smallest blow-up size always

has an embedded representative. And this fact follows easily from the observation 2.1.5

we made in section 2.1.

Then the rest follows from 6.9 in [39] and counting Hamiltonian bundles in 6.4.

Remark 5.1.37. Note that for S2 × S2 with size (µ, 1), µ ≥ 1, a equal blow up of k

points where the size c < 1
2 . One can easily check that the exceptional sphere Ek in X̃k

with smallest blow up size always has an embedded representative. Hence by counting

Hamiltonian bundle tech one obtain a upper-bound of rank of π1(Symph(S2×S2)) plus

2k. Note that rank of π1(Symph(S2 × S2)) means the free rank, where for monotone

S2 × S2 is 0 and non-monotone S2 × S2 is 1.

Remark 5.1.38. Note that if we allow the blow up sizes to be all equal, then counting

Hamiltonian bundle gives the following:

Rank[π1(Symp(X̃k, ω̃ε)] ≤ Rank[π1(Symp(X,ω))] + rk,

where where r is the rank of π2(X), and k is the number of points of blow up of X̃k

from X.

Further, using the above argument together with Proposition 6.5 in [39], one can

prove the following:

Lemma 5.1.39. For (X,ω) = (CP 2, ωFS), let (X̃k, ω̃ε) be the blow up of (X,ω) k times

with area of Ei being εi and ω̃ε being a reduced form, then

Rank[π1(Symp(X̃k, ω̃ε)] ≤ k +NE ,

where NE is the number of −2 spheres whose homology class is Ei − Ej.

Hence Lemma 5.1.34 and Theorem 5.1.36 together give the precise rank of

π1(Symph(X,ω) in many cases:
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Proposition 5.1.40. The upper-bound given by 5.1.36 can be realized for 1,2,3,4,5 fold

blow up of CP 2 when the form is not on MA.

Further, suppose the blow up sizes c1, · · · , c5, if ci < 1/2 and the TSMC is connected

(characteristized by existing more than 8 Symplectic -2 spheres), then the upper-bound

given in Theorem 5.1.36 equals the lower-bound given in Lemma 5.1.34. Namely, if

ci < 1/2, and TSMC is connected, then rank of π1(Symph(X,ω)) = N − 5.

Proof. For up to 4 fold blow up of CP 2 with any form, rank of π1(Symph(X,ω) is

explicitly given in tables 4.2,4.3,4.4.

For CP 2#5CP 2, we give the computation of each cases:

We give the optimal upper-bound using the following different methods, and show

1) and 2) are equal to the lower bound in each case:

• 1) For any k-face with vertex D, we have c4 > c5; then we use CP 2#4CP 2 with

sizes c1, c2, c3, c4 and find rank R4 = π1(Symph(X,ω) for CP 2#4CP 2 in table

4.4. And by Theorem 5.1.36, the upper-bound for π1(Symph(CP 2#5CP 2)) is no

larger than R4 + 5. Because E5 is the only smallest area exceptional sphere, there

are 10 symplectic -2 spheres pairing E5 nonzero. Hence N = R4 + 10, where by

table 4.4, R4 is the number of symplectic -2 spheres pairing E5 equal 0. Hence

we have the lower-bound N − 5 equals the upper-bound R4 + 5.

• 2) For any k-face without vertex D but with C, we have c3 > c4 = c5, then

we use CP 2#3CP 2 with sizes c1, c2, c3, and find rank R3 = π1(Symph(X,ω)

for CP 2#3CP 2 in table 4.3. And by Theorem 5.1.36, the upper-bound for

π1(Symph(CP 2#5CP 2)) is no larger than R3 + 4 + 4 = R3 + 8. Because E4, E5

are the only two smallest area exceptional spheres, there are 15 (6 has only E4,

6 has only E5, 3 has both) symplectic -2 spheres pairing both E4, E5 nonzero.

Hence N = R3 + 13, where by table 4.3, R3 is 2 plus the number of symplectic

-2 spheres pairing both E4, E5 equal 0. Hence we have the lower-bound N − 5

equals the upper-bound R3 + 8.

• 3)For any k-face without vertex D or C but with B, we have 4 cases, MOAB,

MOB, MAB, MB. For MOAB, MOB, we have c2 > c3 = c4 = c5, and we
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use CP 2#2CP 2 with sizes c1, c2 in table 4.2. And we have the upper-bound

equals R2 + 3 + 3 + 3 = 11, where by 4.2, R2 is 2 plus the number of symplectic

-2 spheres pairing both E4, E5 equal 0. For MAB, perform base change 2.2,

B = 1 − c2 >= F = 1 − c1;E1 = · · · = E4 = c3 then by Remark 5.1.37

rk1 ≤ 1 + 2 + 2 + 2 + 2 = 9, which coincide with the lower bound. For

case MB, perform base change 2.2, B = F = 1 − c1;E1 = · · · = E4 = c3 then

by Remark 5.1.37 rk1 ≤ 0+2+2+2+2 = 8, which coincide with the lower bound.

• 4)For any k-face without vertex B C D, but with A, actually only MOA and

MA: we have c1 > c2 = c3 = c4 = c5. For this case, we use CP 2#CP 2. And we

have the upper-bound on equals 1 + 2 + 2 + 2 + 2 = 9 and MA the same. ( Note

this method does not always give the precise rank, MA for instance, see Remark

5.1.41. But for MOA, π0 is trivial and it does give the precise rank.)

• 5)MO: we use CP 2 and the upper-bound equals 5.

More precisely, assuming ci < 1/2, and let G = π1(Symph(CP 2#5CP 2))

• For 5-face MOABCD, rank of G is 15.

• For each 4-face: from MOABC to MABCD, rank of G is 14.

• For each 3-face with N = 18, MOBC,MOBD, MABC,MBCD: rank of G is 13.

• For the rest 3-faces, N = 17, rank of Gis 12.

• For each 2-face with N = 16, MOB,MOC,MAC,MBC,MCD, rank of G is 11.

• For edge MC, the rank of G is 10.

• For each 2-face with N = 14 and containing vertex O, MOA,MOD,MAD,MAB:

rank of G is 9.

• For case MB, perform base change 2.2, B = F = 1− c1;E1 = · · · = E4 = c3 then

rank of G ≤ 0 + 2 + 2 + 2 + 2 = 8, which coincide with the lower bound and hence

rank is 8.
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• For edge MO,MD, the rank of G is 5.

Remark 5.1.41. Again assuming after normalization, ci < 1/2, denote rk1 as rank of

π1(Symph(CP 2#5CP 2)): For case MA, using method 1), rk1 ≤ 9. And together with

Remark 5.1.35, we obtain 5 ≤ rk1 ≤ 9 in this case.

Corollary 5.1.42. Homologous -2 symplectic spheres in 5 blowups are symplectically

isotopic for any symplectic form.

Proof. No less than 10 spheres, π0 is trivial, then the conclusion follows naturally.

For the symplectic form with 8 ω− symplectic -2 sphere classes, homological action

acts transitively in -2 classes because the ω area are the same. Hence the number of

isotopy classes for each homology class is a constant k, (k ∈ Z+ ∪ {∞}). By the upper-

bound in 5.1.36 and the argument in Lemma 5.1.34, rank π1(C0) is less than 12. If

k > 1, then 8k ≥ 16 > 12, contradiction. This means homologous -2 symplectic spheres

has to be symplectically isotopic.

Remark 5.1.43. Note that in Theorem 5.1.36, using X to be blow up of several points

of CP 2 together with results in section 3.2, instead of CP 2 itself, one get finer results

on the upper-bound of rank π1(Symph(X,ω), for example:

In case MABCD in form 5.1, using CP 2 one have 15 as the upper-bound, while

using CP 2#3CP 2 of sizes c1, c2, c3, one have 5 + 4 + 5 = 14 as the upper-bound. And

Lemma 5.1.34 gives 14 as lower bound of rank π1(Symph(X,ω) in this case. Hence 14

is the precise value of rank π1(Symph(X,ω).

Note that on any k-face with B as a vertex, one have c1 + c2 + c3 = 1, then Theorem

5.1.36 is needed for the computation of the precise rank of π1(Symph(X,ω).

Corollary 5.1.44. π0(Symp(X,ω) is a reflection group, often denoted as Γ(X,ω).

Assuming ci < 1/2 and there are no less than 15 Symplectic -2 spheres, the number

PR[π0(Symp(X,ω)] +Rank[π1(Symp(X,ω))]− rank[π0(Symph(X,ω))]

is a constant and is equal to 20 − Rank(PB5/Z2) = 15, where PR[π0(Symp(X,ω)] is

the number of positive roots of π0(Symp(X,ω), and rank of π0(Symph(X,ω)) means

the cardinality of the minimal generating set of π0(Symph(X,ω)).
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Remark 5.1.45. Note that only when the closed manifold has a Lagrangian root

lattice other than type An or its direct product, can one obtain a non-trivial Torelli

SMC. Further, our results suggest that there is a coherent approach for the Symplectic

mapping class group and π1(Symph(X,ω) for a rational 4-manifold with Euler number

up to 11.

And we also make the conjecture on the persistence type result analogous to Corol-

lary 1.2.7 will also apply here:

Conjecture 5.1.46.

PR[Γ(X,ω)] +Rank[π1(Symp(X,ω))]−Rank[π0(Symph(X,ω))]

is a constant equaling 15 for any symplectic form on CP 2#5CP 2.
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k-face ΓL N ω := (1|c1, c2, c3, c4, c5)

Point M D5 0 monotone

MO A4 10 1 > λ; c1 = c2 = c3 = c4 = c5
MA D4 8 λ = 1; c1 > c2 = c3 = c4 = c5
MB A1 × A3 13 λ = 1; c1 = c2 > c3 = c4 = c5
MC A2 × A2 15 λ = 1; c1 = c2 = c3 > c4 = c5
MD A4 10 λ = 1; c1 = c2 = c3 = c4 > c5

MOA A3 14 1 > λ; c1 > c2 = c3 = c4 = c5
MOB A1 × A2 16 1 > λ; c1 = c2 > c3 = c4 = c5
MOC A1 × A2 16 λ < 1; c1 = c2 = c3 > c4 = c5
MOD A3 14 1 > λ; c1 = c2 = c3 = c4 > c5
MAB A3 14 λ = 1c1 > c2 > c3 = c4 = c5
MAC A1 × A1 × A1 17 λ = 1; c1 = c2 > c3 > c4 = c5
MAD A3 14 λ = 1; c1 > c2 = c3 = c4 > c5
MBC A1 × A1 × A1 17 λ = 1; c1 > c2 = c3 > c4 = c5
MBD A1 × A2 16 λ = 1; c1 = c2 > c3 = c4 > c5
MCD A1 × A2 16 λ = 1; c1 = c2 = c3 > c4 > c5

MOAB A2 17 λ < 1; c1 > c2 > c3 = c4 = c5
MOAC A1 × A1 18 λ < 1; c1 > c2 = c3 > c4 = c5
MOAD A2 17 λ < 1; c1 > c2 = c3 = c4 > c5
MOBC A1 × A1 18 λ < 1; c1 = c2 > c3 > c4 = c5
MOBD A1 × A1 18 λ < 1; c1 = c2 > c3 = c4 > c5
MOCD A2 17 λ < 1; c1 = c2 = c3 > c4 > c5
MABC A1 × A1 18 λ = 1; c1 > c2 > c3 > c4 = c5
MABD A2 17 λ = 1; c1 > c2 > c3 = c4 > c5
MACD A1 × A1 18 λ = 1; c1 > c2 = c3 > c4 > c5
MBCD A1 × A1 18 λ = 1; c1 = c2 > c3 > c4 > c5

MOABC A1 19 λ < 1; c1 > c2 > c3 > c4 = c5
MOABD A1 19 λ < 1; c1 > c2 > c3 = c4 > c5
MOACD A1 19 λ < 1; c1 > c2 = c3 > c4 > c5
MOBCD A1 19 λ < 1; c1 = c2 > c3 > c4 > c5
MABCD A1 19 λ = 1; c1 > c2 > c3 > c4 > c5

MOABCD trivial 20 λ < 1; c1 > c2 > c3 > c4 > c5

Table 5.1: Reduced symplectic form on CP 2#5CP 2
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