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Abstract. A positive rational surface is diffeomorphic to n-point blow up of CP 2 with a
symplectic form ω such that ω is c1-positive. We determine the rank of π1(Ham) for a
symplectic form ω of type A and D on a positive rational surface. As an application, we
obtain isotopy results for symplectic spheres and stability results for the fundamental groups
of space of ball packing in CP 2.
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1. Introduction

Let (M,ω) be a symplectic manifold. The topology of the diffeomorphism group and its
subgroups, such as the symplectomorphism group, has long been a fascinating subject in
mathematics. Of particular interest is the identity component of the symplectomorphism
group, which is equivalent to the Hamiltonian diffeomorphism group for simply connected
symplectic manifolds.

The study of the fundamental group of the Hamiltonian diffeomorphism group (π 1(Ham(M,ω)))
has attracted much attention due to the Seidel representation (cf. [Sei97]) from the group
to the quantum homology ring, as well as the existence of the bi-invariant Hofer metric (cf.
[Pol98]) on the group. In particular, the rank of the fundamental group plays an essential role
in understanding the Hofer diameter conjecture and non-displaceable Lagrangian tori.

We will focus on positive rational surfaces. Recall that a symplectic rational surface (X,ω)
is positive if c 1(X) · [ω] > 0. The positivity condition of a rational surface is equivalent to
the existence of a divisor D ⊂ X, such that (X,D) is a log Calabi-Yau surface.

Our recent works [LL20; LLW22] have made progress in understanding the topology of the
symplectomorphism group for rational symplectic manifolds with small Euler numbers. In
particular, we utilized the generalized Alexander duality in [Eel61] to compute the rank of
the fundamental group of the symplectomorphism group.

Based on our previous results, we put forward the following conjecture:

Conjecture 1.1. For a rational symplectic manifold (X,ω) where the root system associated
with its Lagrangian spherical classes is of type A or D, we have:

(1)
(χ(X)−2)(χ(X)−3)/2 = r+[π0(Symp(X,ω))]+rank[π1(Symp(X,ω))]−rank[π0(Symph(X,ω))].

Here, r+[π0(Symp(X,ω))] denotes the number of positive roots for π0 as a Weyl group. It
is worth noting that a symplectic class can be endowed with a type using the root system
associated with its Lagrangian spherical classes.

In [LLWxi], we made significant process on π0(Symph(X,ω)) of a positive rational surface. It
is trivial if it is of type A and is a sphere braid group if it is of type D. Building on this result
and using the filling divisor technique in [LLWxi], we prove the following theorem:

Theorem 1.2. Conjecture 1.1 holds for positive rational surfaces X with type A or D sym-
plectic forms. Moreover, for a reduced form, it is completely determined by a finite collection
of −2 symplectic sphere classes of degree 0, 1, and 2. Here degree of a class A ∈ H2(X,Z)
means A ·H, where H is the hyperplane class in CP 2.

Our result provides a deeper understanding of the topology of the symplectomorphism group
for positive rational surfaces and has implications for various problems. Our result confirms
that the upper bound given by McDuff in [McD08] for π1(Symp(X,ω)) often gives the precise
rank, but in the case of type D forms, the actual rank is much smaller than the upper-bound.
We also have the following corollary, on the isotopy uniqueness of symplectic sphere classes.
Notice that previously, such uniqueness is only known for exceptional spheres or spheres
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with positive self-intersections. Those proofs are the genericity arguments in Gromov-Witten
theory, while ours has a completely different nature.

Corollary 1.3. For a positive rational surface,

• any homologous symplectic -2 spheres are symplectically isotopic.

• when the form is of type A, any symplectic spheres which are proper transforms of
the conic (in class 2H − E1 − · · · − En), are symplectically isotopic.

Note that homological actions are generated by symplectic (−2) spheres. For a type A or D
symplectic form,[LLWxi] showed that the SMCG is trivial or braid group, which is torsion-
free. In alignment with this result and [CLW21], we have the following corollary:

Corollary 1.4. For a positive rational surface with a type A or D symplectic form, the finite
group acting symplectically is just the subgroup of homological actions.

Notice that the main theorem 1.2 hints that the stability result of [Anj+ub] can be extended
to the c1-positive cone for an arbitrary rational surface. We conjecture that even if there are
infinitely many negative sphere classes, only a finite subset of them will contribute to the
change of homotopy type of Symp(X,ω):

Conjecture 1.5. For a fixed number k ∈ Z+, there are finitely many walls given by sphere
classes with negative self-intersections, such that: when ω1 and ω2 belongs to the same
chamber of the symplectic cone of M , πi(Symp(M,ω1)) = πi(Symp(M,ω2)), ∀1 ⩽ i ⩽ k.

For rational surfaces with Euler number at most 12, [Anj+ub] proved this conjecture in full
generality. It is much more difficult to approach when we blow up CP 2 at more than 9
points, due to the abundance of curves and Nagata conjecture. For positive rational surfaces,
[LLWxi] proved the stability for π0(Symp), where the wall is characterized by Lagrangian
spherical classes. In this paper, we prove this for π1(Symp), where the wall is the same as
π0. We give a new characterization by (H − E1)-fiber classes and (H − E1)-section classes,
as detailed in Section 4.

Meanwhile, the partial solution of Conjecture 1.5 implies the stability for the fundamental
group of space of unparametrized ball packings Emb∗ω(B

4(c⃗),M), where M4 is rational:

Proposition 1.6. If the blowup form ω̃ is c1 positive, then the π1 of Emb∗ω(B
4(c⃗),M) is

invariant if the change of size c⃗ does not affect Lagrangian sphere classes of the blowup
symplectic form.

It is also interesting to consider the question of whether one can represent the free loops
in π1(Symp(M,ω)) by circle actions. Notice that when M = X5, [Anj+23] observed that
there are loops that are not represented by Hamiltonian circle actions. Moreover, under
deformation, some loops generated by circle actions become loops that are not circle repre-
sentatable. We give such examples for any Xk in Example 6.4. Further, inspired by this
example and the spirit of the above stability results and conjecture, we end up with the
following conjecture:
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Conjecture 1.7 (=Conjecture 6.7). (1) Xk with a symplectic form in class [1, a, 1−a2 , 1−a2 , · · · , 1−a2 ]

has Hamiltonian circle actions if and only if a > k−3
k−1 .

(2) Moreover, for Xk with a reduced symplectic form, that is c1-nonpositive, or is c1-
small (c1 · [ω] = ϵ), any Hamiltonian loop cannot be represented by Hamiltonian circle
actions.

Acknowledgements: The authors are supported by NSF Grants. We would like to thank
Silvia Anjos, Olguta Buse, Richard Hind, Dusa McDuff, Martin Pinsonnalut, and Lenoid
Polterovich for their helpful conversations and interest in this work.

2. Symplectic cone and special holomorphic curves

For a rational surface, Mcduff [McD98] asserts that the orientation-preserving diffeomorphism
group Diff+(X) acts on the symplectic cone CX . As diffeomorphic symplectic forms have
homeomorphic symplectomorphism groups, we can restrict our attention to a fundamental
region of CX under the action of Diff+(X)× R+.

In this section, we recall the explicit description of V (X) and its c1-positive portion NR,
together with the root system of a reduced symplectic form. Now we will assume that the
rational surface Xn = CP 2#nCP 2 is framed, i.e. has a choice of basis H,E1, · · ·En of
H2(Xn,Z).

2.1. The c1-positive symplectic cone. Let K ∈ H2(X;Z) be the symplectic canoni-
cal class of some orientation-compatible symplectic form on X. Recall the K-symplectic
cone

(2) CX,K = {e ∈ CX | e = [ω] with Kω = K}.

We also highlight the following c1-positive part:

(3) PK := {e ∈ CK |e · (−K) > 0}
It is called c1−nef cone in [LZ15].

First, we can use the R+ action to normalize the area e(H) = 1. A class in CX,K is represented
by the vector (1, |m1, · · · ,mn) or simply by (m1, · · · ,mn).

Recall that such a vector (ν|a1, · · · , an) is reduced if ν ≤ a1 + a2 + a3, anda1 ≥ · · · ≥ an > 0.
We define the normalized reduced symplectic cone Vn = V (Xn) for X = Xn as the
subset of reduced symplectic classes with ν = 1 in CXn . Recall from [LL02; KK17] that any
class e ∈ CXn has a unique reduced representative in its Diff+(Xn)× R+ orbit.

We use the shorthand notation

(1| a1, · · · a1︸ ︷︷ ︸
l1

, · · · , ak, · · · ak︸ ︷︷ ︸
lk

, · · · , am, · · · am︸ ︷︷ ︸
lm

) := (1| a×l11 , · · · , a×lkk , · · · , a×lmm ).

When li = 1, we will omit it in the notation.

To describe V (Xn) explicitly, we consider the closed polytope Rn in H2(Xn;R) with the
following n+ 1 vertices:

M = −1
3K, O = (1| 0×n), A = (1| 1, 0×n−1), G3 = (1|12 ,

1
2 , 0

×n−2),
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G4 = (1| (13)
×3, 0×n−3), · · · , Gn = (1| (13)

×n−1, 0).

Lemma 2.1. For X = Xn, a class σ is normalized and reduced if and only if σ ∈ Rn.
When n ≤ 9, the convex hall of M,G1, · · · , Gn is the normalized reduced cone. Moreover,
when n ≥ 10, the normalized reduced symplectic cone is the intersection of the convex hall
M,G1, · · · , Gn intersected with the positive condition σ2 > 0. Vn+1 can be defined inductively
by adding n new vertices from Vn.

For n ≥ 10, the general formula for the n new vertices is as follows:

On the Gn+1O edge with O = (1| 0×n): (1| ( 3n)
×n).

On the Gn+1A edge with A = (1| 1, 0×n−1): (1|n−7
n−3 , (

2
n−3)

×n−1).

On the Gn+1G3 edge with G3 = (1| 1
2 ,

1
2 , 0

×n−2): (1| n−5
2(n−3) ,

n−5
2(n−3) , (

2
n−3)

×n−2).

On the Gn+1Gi edge for 4 ≤ i ≤ 10: (1| (13)
×i, ( 9−i

3(n−i))
×n−i).

For Xn, recall that the −2 sphere classes form a topological root system ΓK , where the
simple roots of ΓK are given by li, 0 ≤ i ≤ n− 1, l0 = H −E1−E2−E3, li = Ei−Ei+1,∀i >
0.

Lemma 2.2. Suppose ω is a normalized reduced symplectic form on Xn, then the Lagrangian
spheres classes of ω form a class of type A D or E:

(1) ω is of type Ek, k = 6, 7, 8 (or simply type E) if [ω] = (1| (13)
×k,mk+1 · · · ), where

mk+1 < 1
3 , k = 6, 7, 8 respectively. The subspace of type Ek classes is of codimension

k in the reduced cone.

(2) ω is of type Dk, k ≥ 4 (or simply type D), if

[ω] = (1| a, (1− a

2
)×k,mk+2 · · · ), where

1− a

2
> mk+2 &

1

3
< a < 1;

or

[ω] = (1| (1
3
)×k,mk+1 · · · ), and k = 5.

The subspace of type Dk classes is of codimension k in the reduced cone.

(3) ω is of type A for all other possibilities. Equivalently, ω is of type A if and only if at
least one of li has positive ω-area for i = 0, 2, 3, 4 (See Figure 1).

2.2. A positive sphere cone Lemma relative to (-2) sphere classes. The aim for this
part is Lemma 2.4. It is a relative version of positive sphere cone Lemma parallel to Lemma
5.24 in [LZ15].

Lemma 2.3. For any ω ∈ PK+, we can find a positive combination of positive sphere classes
in S+

K by Lemma 2.3.

We will show that this holds for PD
K+ and SD+

K , which is the positive spheres pair D positively.
This relative version is useful in the stability result for π1(Symp), and it plays the same role
as the original version in the stability for π0(Symp) in [LLWxi].
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Lemma 2.4. Let D be a symplectic −2 sphere class. Any class d ∈ PD
K+ can be written as a

finite R+-combination of positive sphere classes in SD+
K , where PD

K+ is the relative sympelctic

cone making a class D symplectically positive, and SD+
K is the set of positive classes pairing

with D non-negative.

Proof. Notice that PD
K+ is the orbit space of PK+ under the reflection along the class D.

From the convex geometry point of view, this is just to say that the hyperplane defined by
D · − = 0 divides PK+ into symmetric half cones.

For 3 ≤ k ≤ 8, We do induction. Suppose we have done the case for 3 ≤ k ≤ l − 1, we want
to argue that for Ml = CP2#lCP2, SD+

K = PD
K+ .

Recall Lemma 5.24 (1) in [LZ15], PK is an open polytope with each face of the boundary a
wall of a class in EMl,K . Notice that when k ≥ 3, all the exceptional classes are equivalent
up to Cremona transforms.

Also, Lemma 5.24 (1) in [LZ15] can be upgraded to be compatible with the reflection along
D: when looking at PK at the positive side (negative side respectively) of the hypersurface
D ·ω = 0 for ω ∈ PK , the faces of the boundary is a wall of class in EMl,K that pair D positive
(negative respectively).

Hence e could be written as a finite combination
∑q

i=1 aiei with ei in a boundary face and
ai > 0. Notice each boundary face FE′

i
(with E′

i ∈ EMl,K) of PMl,K corresponds to PMl−1,K

by Lemma 5.24 (2) in [LZ15]. Also, when e is on the positive side of the hypersurface defined
by D, by convexity, all ei can be chosen from the positive side of boundary faces intersecting
with D.

Then by induction assumption, each ei ∈ SD+
Ml−1,K

. Hence e ∈ SD+
K as well by definition.

When k ≥ 9, we still do induction. We need to deal with the wall contributed by the class
−K in PD

K+ and PK+ .

Let us start from PK+ . Consider a class of the form Va = aH −
∑l

i=1Ei. Given any e ∈ PK ,
we can find a < 3 such that e · (aH −

∑
Ei) = 0. This is because V3 = −K pairs positively

with e, and when a = 0, V0 pairs negatively with e. Notice that Va · V3 < V3 · V3 ≤ 0, so the
hypersurface of Va does not intersect the wall of −K.

Now if we let e lie on the positive side of the D-hypersurface, i.e. e ∈ PD
K+ . Then notice that

e has an open neighborhood in Va∩PD
K+ . We can choose a generic line L in this hypersurface

such that e ∈ L and L does not intersect the D-hypersurface. Notice that L will intersect the
polytope PK inside the interior of the boundary faces F1, F2 at e1 and e2. We further notice
that by the choice of L, both e1 and e2 pairs positively with D.

Hence we have e = a1e1 + a2e2 with ai > 0, and each class ei ∈ PMl−1,D,K . Because each of
them lies in the interior of the face Fi, and it pairs D positively. By induction assumption,
ei ∈ SD+

K . This finishes the proof. □

Remark 2.5. Using Lemma 2.14 in [LLWxi], one can easily show that d is a positive

combined using ED+
K , which is the set of exceptional classes pairing with D non-negative.
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2.3. Well-founded relation on the c1-positive cones. Recall that a binary relation ≺
on a set S is well-founded if there are no infinite descending chains · · · ≺ ai ≺ a1 ≺ a0,
or in other words every descending chain has a minimal element. When a ≺ b, we call a is a
predecessor of b. A well-founded relation allows us to do induction in section 5.3.

Now we describe such a relation on the union of c1-positive cones ∪nNR(Xn) and recall how
this relation preserves the type of the symplectic form and the symplectic mapping class
group.

Definition 2.6. Let um = (1| a×l11 , · · · , a×lkk , · · · , a×lmm ) be a symplectic class in the reduced
c1-positive cone NR(Xn). Recall that this notion implies the sharp inequalities a1 > · · · ak >
· · · > am. Now we define a relation ≺ on ∪n≥0NR(Xn):

• If m > 1 and 2am + a1 < 1, then we say um−1 = (1| a×l11 , · · · , a×lkk , · · · , a×lm−1

m−1 ) ⊂
NR(Xn−mk

) a predecessor of um. Denote um−1 ≺ um.

• if m = 1 and a1 <
1
3 , then we say u0 = (1) on X0 = CP 2 the predecessor of u1.

Lemma 2.7. The relation ≺ in Definition 2.6 is well founded. It preserves the type of the
symplectic form and the symplectic Torelli group. More precisely:

(1) Each descending chain of ≺ has a minimal element.

(2) The relation ≺ preserves the type of the symplectic form class.

(3) The minimal element is either a type A symplectic class on Xn, 0 ≤ n ≤ 4, a type
Dn−1 class on Xn, a type D5 class on X5, or a type Ek class on Xk, k = 6, 7, 8.

(4) The relation ≺ preserves the symplectic Torelli group.

Proof. (1) Note the predecessor is a blowdown symplectic form class, and any u has only
finitely many predecessors. Hence there is a minimal element in this finite set w.r.t
to ≺.

(2) This follows from Theorem 3.20 and Proposition 3.25(ii) in [LLWxi].

(3) To see this, we analyze where the element um does not have a predecessor. When
m = 1, the only possibilities are (1, |a×1 k), a1 ≥ 1

3 , k ≤ 2, or (1, |(13)
×k), 3 ≤ k ≤ 8.

Note that those are type A forms on Xi, 1 ≤ i ≤ 4, D5 on X5, and Ej on Xj , j = 6, 7, 8.
When m > 1, the only case is when 2am + a1 = 1. Note that um is reduced and
a2 ≥ am and 2a2+a1 ≤ 1. Hence the only possibility is am = a2, which means m = 2
and the form is of type Dn−1 on Xn. In all other cases, m = 0 and the minimal
element is the Fubini-Study form on CP 2, which is of type A.

(4) This follows from (2) and Theorem 1.5 of [LLWxi].

□

2.4. Upper bound of π1(Symp) for type A,D forms on CP2#nCP2,n > 5. We will use
the blowing down smallest exceptional sphere process.

Note that this process will not change the type of the symplectic form.

Then recall the following from [LLW22]:
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Proposition 2.8. Let (X,ω) be a symplectic rational surface with a given reduced form,

(X̃k, ω̃) be the blow-up of X at k points, and denote r = b2(X). Assume that the k blowup is
smaller than an arbitrary exceptional class of X.

If the k blow-up sizes are distinct, then

rank[π1(Symph(X̃k, ω̃)] ≤ rank[π1(Symph(X,ω))] + rk + k(k − 1)/2;

and if the k blowup sizes are the same, then

rank[π1(Symph(X̃k, ω̃)] ≤ rank[π1(Symph(X,ω))] + rk.

We use the upper bounded computed from the chain of relations and the minimal element.
In section 5.3 we will show that it is the optimal upper bound.

3. Stability of π1(Symp(X,ω)) in the c1 positive cone

We prove the stability of π1(Symp(X,ω)) in PK or its reduced counterpart. In particular,
we have the following

Proposition 3.1. On each simplical facet of PK , the π1(Symp(X,ω)) is invariant.

Here by a simplical facet, we mean a maximal simplex, which is relatively open, and of the
same codimension in PK .

To prove this, recall that in [LLWxi], we have the following stratification of Aw, which is the
space of almost complex structures compatible with some symplectic form that is isotopic to
ω.

We have the following:

Definition 3.2. Given J ∈ Aω and an exceptional class E, one may take a symplectic form
ω′ such that J ∈ Jω′. There is a decomposition

Aω = A0
ω(E) ⊔ A2

ω(E) ⊔ A4
ω(E)

such that J ∈ A†
ω(E) ⇐⇒ J ∈ J †

ω′,E, where † = 0, 2, 4.

Moreover, it is straightforward to introduce the relative to D, a (-2) symplectic sphere class
version, of the above spaces and stratification.

Definition 3.3. Let D be an ω-symplectic (-2) sphere class and AD
ω be the subspaces of

J ∈ Aω such that there is a J-holomorphic embedded curve in class D. Then we have

AD
ω = AD,0

ω (E) ⊔ AD,2
ω (E) ⊔ AD,4

ω (E)

such that J ∈ AD,†
ω (E) ⇐⇒ J ∈ JD,†

ω′,E, where † = 0, 2, 4.

Also, recall Proposition 3.28 in [LLWxi]:
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Lemma 3.4. For a form u = (1|c1, · · · , cn−m, cn−m+1, · · · , cn) ∈ Pn
K , here P k

K is c1 pos-
itive reduced symplectic cone, cn−m > cn−m+1 = · · · = cn, and cn is the minimal ex-
ceptional size. We define two types of lines: minimal exceptional line: uu0 where
u0 := (1|c1, · · · , cn−m, 0, · · · , 0), A-extremal line: uA, where A := (1|1, 0, · · · · · · , 0). .

For any ut ∈ L where L is the interior of uu0, uA, we always have Au ⊂ Aut.

We are going to prove Proposition 3.1 using the same kind of deformation as in Lemma
3.4:

Proof. Firstly, note that any two points u, u′ can be connected by a path using two types of
lines in Lemma 3.4, if they are in the simplicial facet of PK . For each target form u′, choose
a decomposition in 2.3 and write u′ =

∑
Ei.

Then by Lemma 3.10 in [LLWxi], the strata A2
ω(E) in Definition 3.2 is covered by the unions

of all AD
ω ’s where D · Ei ≤ 0 for some Ei in u′ =

∑
Ei.

Note it follows from Lemma 2.4 and Lemma 3.3 that the open part of AD
ω is invariant and

the complement is of real codim at least 2 in AD
ω (this means codimension at least 4 in Aω).

Also, note that

Lemma 3.5. In the simplicial facet of PK , the possible homology classes D are the same.

Proof. By the root description of (-2) classes, Lemma 2.10 in [LLWxi], one only needs to
check the simple roots are the same for the reduced c1 positive cone. □

Hence we have double inclusion for the top strata of each AD
ω . By Lemma 3.5, the top strata

and codimension 2 strata have a part that is invariant under the deformation between u and
u′; further, the complement of this invariant part has codimension 4 or higher in Aω. Then
the πi, i ≤ 2 of Au and Au′ are the same.

Hence the stability Proposition 3.1 follows from this and the Kroheimer fibration.

□

4. Stratification of Jω according to (H − E1)-fiber/section classes

We are going to give a lower bound for type A forms using H −E1-fiber/section classes and
their induced stratification on Jω

4.1. (H−E1)-fiber/section classes. Let us recall a special type of sphere class from [LLW
a] called (H − E1)-fiber/section classes.

Definition 4.1. Let X be a rational 4-manifold with canonical class K = −3H+E1+· · ·+En,
and A ∈ H2(X,Z) such that gJ(A) = (K · A + A · A)/2 = 0. We call A an (H − E1)-fiber
type class if A · (H − E1) = 0, and A an (H − E1)-section type class if A · (H − E1) = 1.

Those classes have the nice property that their Gromov limits only have embedded compo-
nents. This allows us to find a nice stratification of Jω and to apply Alexander duality. Here
Jw is the space of almost complex structures compatible with ω.
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Let us also recall from [LL20] that the symplectic sphere classes Sω ⊂ H2(M,Z) and its
subset S<0are going to give rise to a stratification of Jω.

More precisely, we can decompose Jω into

Definition 4.2. The prime subsets

JC := {J ∈ Jω|A ∈ S<0 has a J-hol embedded representative iff A ∈ C},

where C is a subset of spherical classes of H2(X) such that any pair of classes intersect
positively.

Note that in general JC is a Banach(Fréchet) analytic subset of Jω of finite codimension. We
also simply denote Cod(C) as the codimension of JC in Jω.

Also, recall the following fact about the stable curve of such classes

Proposition 4.3. Let (M,ω) be a symplectic rational surface and A ∈ Sω. Suppose ω is a
reduced symplectic form and A · (H − E1) = 0, 1. If A ∈ S<0 and A =

∑
riCi, ri ∈ Z+ be a

homology decomposition from a Gromov limit, then each Ci is an embedded sphere class and
C := {Ci} has Cod(C) > Cod(A).

We give the following change of basis in H2(X,Z) in preparation for the Dn−1 case and

the inductive step. Note that X = S2 × S2#kCP 2, k ≥ 1 can be naturally identified with
CP 2#(k + 1)CP 2. Denote the basis of H2 by B,F,E′

1, · · · , E′
k and H,E1, · · · , Ek, Ek+1

respectively. Then the transition on the basis is explicitly given by

B = H − E2,

F = H − E1,

E′
1 = H − E1 − E2,(4)

E′
i = Ei+1,∀i ≥ 2,

with the inverse transition given by:

H = B + F − E′
1,

E1 = B − E′
1,

E2 = F − E′
1,(5)

Ej = E′
j−1, ∀j > 2.

νH− c1E1− c2E2−· · ·− ckEk = µB+F −a1E
′
1−a2E

′
2−· · ·−ak−1E

′
k−1 if and only if

(6) µ = (ν−c2)/(ν−c1), a1 = (ν−c1−c2)/(ν−c1), a2 = c3/(ν−c1), · · · , ak−1 = ck/(ν−c1).

4.2. Symp(M,ω) via stratification of Jω. We use the same strategy as in [LLW22]. We
will generalize Lemma 5.33 and Theorem 5.35 in [LLW22], which together give the precise
rank of π1(Symph(X,ω)) in the case of type A:
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Theorem 4.4. Suppose the symplectic form is of type A on Xn, then we can give a lower
bound of the rank of π1(Symp(Xn, ω)), which equals the upper-bound given in Proposition
2.8.

In particular, for a generic symplectic form (there’s no -2 Lagrangian sphere) then rank of
π1(Symp(Xn, ω)) = n(n+ 1)/2.

Proof. The upper bound This is given by Proposition 2.8, and for a generic symplectic
form, it is 1 + 2 + · · · + n = n(n + 1)/2. For an arbitrary type A form, one computes this
according to the well-founded relation 2.6. We will show that this is the optimal upper bound.

Now we show that there is a lower bound of π1(Symp(Xn, ω)). Recall from [LLWxi] that we
have the filling divisor

Q

H − E1 − E6

E2 E3 E4 E5

E6

H − E1 − E7 · · · H − E1 − En

E7

En

. . .

Where Q = 2H − E1 − · · · − E5.

Complement U = (C−{p1, p2, · · · , pn−6})×C, and by Lemma 5.7 of [LLWxi], its compactly
supported symplectomorphism group is connected.

And for a reduced form with ω = (1|c1, 1−c12 , · · · , 1−c12 ) and c1 >
n−7
n−3 , we have

(7)
Sympc(Un−6) −−−−→ Stab0(C) −−−−→ Stab(C) −−−−→ Symph(X,ω)y y y

Z2n−7 (S1)2n−6 ×Diff+(S2, n− 1) C0 ≃ S

When TSMC is connected, we consider the following portion of the LES:

(8) π2(Jtop) → Z → π1(Symph(X,ω)) → π1(S)
f−→ π0(Stab(C)) → 1

Note that we can think of the following sequence
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(9) π1(Symph(X,ω))/Z → π1(S)
f−→ π0(Stab(C)) → 1

and its abelinization gives the following:

(10) Z → π1(Symph(X,ω)) → Ab[π1(S)]
f−→ Ab[π0(Stab(C))] = Z(n−1)(n−4)/2 → 1

In the next Proposition 4.6, we deal with π1(S), and show that its rank in (n− 1)2 + 1 :

We need to find out the -2 curve that pairs at least one of the -1 curves negative in the
configuration.

A complete list is the following:

Number of curves Homology class

4 H − Ei − Ej − Ek, i, j, k ∈ {2, · · · , 5}
(n− 2)(n− 1)/2 Es − Et, s, t ∈ {2, · · · , n};
(n− 1)(n− 2)/2 H − E1 − Ep − Eq, p, q ∈ {2, · · · , n}.

n− 5 2H − E1 − · · ·E5 − Ei, i > 5.

Table 1. List of curves

Hence the total number is (n− 1)(n− 2) + n− 1 = (n− 1)2 + 1.

□

Further, we have the following decomposition of such classes of (h− e1)-fiber/section classes,
proved in [LLWxi] Section 5:

Lemma 4.5. There are three possible types of bubblings of the above list of homology classes
if it is not an embedded curve:

• (2h− e1 − e2 − e3 − e4 − e5 −
∑

i∈I0 ei) +
∑

i∈I0 ei;

• (h−
∑

i0∈I0 ei0) + (h− e1 −
∑

i1∈I1 ei1) +
∑

i∈I2 ei;

• (e1 −
∑

i0∈I0 ei0) + (h− e1 −
∑

i1∈I1 ei1) + (h− e1 −
∑

i2∈I2 ei2) +
∑

i3∈I3 ei3.

Proposition 4.6. The rank of π1(S) is (n− 1)(n− 2) + n− 1 = (n− 1)2 + 1, generated by
the above -2 symplectic sphere classes.

Proof. In equation (8), we want to compute π1(S) fromH1 of the complement of Codimension
at least 2 strata of Jω and Alexander duality. Let us recall the following:

Theorem 4.7. Let X be a Hausdorff space, Z ⊂ Y a closed subset of X such that X−Z,Y−Z
are paracompact manifolds modeled by topological linear spaces. Suppose Y − Z is a closed
co-oriented submanifold of X − Z of codimension p, then we say (Y,Z) is a closed relative
submanifold of (X ,Z) of codimension p. By relative version of Alexander-Pontrjagin duality
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in [Eel61] when taking constant coefficient, we have an isomorphism H i(X −Z,X −Y;G) ∼=
H i−p(Y − Z;G) for any Abelian coefficient group G.

Let X be the space of J ∈ Jω where all irreducible pseudo-holomorphic curves have non-
negative H coefficients. This means the complement Jω−X is the space of J such that there
exists an irreducible J-holomorphic curve representing class A such that A ·H < 0.

Lemma 4.8. If ω is reduced, Jω − X has an embedded J-holomorphic sphere representing
class −kH + (k + 1)E1 −

∑
iEi. X has the same (trivial) π1 as Jω. Furthermore, Jω −X is

closed in Jω, and hence X is a manifold.

Proof. The first statement is a combination of Lemma 4.1 in [Zha17] and Lemma 3.2 in

[Che20]. Lemma 4.1 in [Zha17] says that for M = CP 2#kCP 2, C = aH+
∑

biEi with a < 0
is represented by an irreducible curve, then C = −nH + (n + 1)E1 −

∑
kj ̸=1Ekj , n ≥ 1 up

to a Cremona tranform. Then by Lemma 3.2 in [Che20], for a reduced symplectic form, any
such class is an embedded sphere class, and we don’t need the Cremona transform.

For the second statement, note that Jω −X is a union of submanifolds characterized by the
existence of embedded spheres of self-intersection less than −2. Hence those submanifolds
each have real codimension at least 4 in Jω. By transversality, the complement X has the
same fundamental group as Jω, i.e. it is simply connected.

Now we prove the third statement. Assume for contradiction, Jω − X is not closed in Jω.
This is to say that Jω −X ∩ X ̸= ∅. Hence by Gromov compactness theorem, there is some
class A with A ·H < 0, that has a stable curve A =

∑
i riSi, ri > 0 which is J-holomorphic

for some J in X . By definition, any irreducible curve Si that is holomorphic w.r.t this J has
a non-negative coefficient on H. This is a contradiction against A ·H = (

∑
i riSi) ·H < 0.

Hence Jω − X is closed in Jω. Because Jω is itself a manifold, removing a closed subset we
get X , which is also a manifold.

□

We then define the following: Y ⊂ X = {J s.t. some classes in configuration 4.2 is not
embedded }. Z ⊂ Y = {J s.t. curves in the configuration 4.2 has a stable representative and
the total codimension of the codimension of the components is higher than 2}.

Moreover, a complete list has been given in table 1. Notice that those are either (H − E1)-
fiber classes or (H −E1)-section classes. Recall that in the stable curve of such classes, each
component is an embedded rational curve and the codimension of the stable curve is no less
than that of the class itself.

Now let us prove the following Lemma:

Lemma 4.9. Z and Y are closed subsets in X . Consequently, X −Z is an open submanifold
of X and X − Y is a closed submanifold of X − Z.

Proof. First, we deal with the closedness of Y. Assume the contrary Y is not closed. This
means that there is a sequence of Jn ∈ Y, each admits an embedded Jn-holomorphic (-2)
sphere, converging to J0 ∈ X−Y which has no embedded (-2) spheres. This is a contradiction.

Similarly, assume that Z is not closed, the same contradiction will occur. □
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Q

H − E1 − E6

E2 E3 E4 E5

H − E1 − E7 · · · H − E1 − En

Hence we have X −Y and X −Z are both submanifolds of X and they are also submanifolds
of Jω.

Note that it also immediately follows that Y −Z is closed in X −Z. This is essential for the
Alexander duality. Notice that by equations (4.5), when there are no irreducible curves with
negative H coefficients, each component of a stable curve of any class in 4.2 is an embedded
sphere of non-positive self-intersection.

Now Alexander duality can be applied to the pair X − Y and Y −Z. Note that S is exactly
X−Y, whoseH1 can be computed by counting the number of (connected components) of codi-
mension 2 strata. Notice that for a generic symplectic form, the transitivity of Symp(M,ω)
acting on -2 symplectic spheres and the connectivity of Symp(M,ω) altogether yield that the
number of connected cod=2 strata is the number of -2 curves listed as above. □

5. Optimal upper bound and π1(Ham(M,ω)) in the type D case

In this section, we prove that the well founded-relation in 2.6 gives us the optimal lower
bound. Based on this, we show it agrees with the lower bound given in the previous section.
Moreover, in the type D case, we explicitly show that π1(Ham(M,ω)) is the free abelian
group of the expected rank.

5.1. The equal small size blowup. First we detail how the upper bound behaves under
the induction step in the well founded relation:

Proposition 5.1. If we compute the upper bound using a known rank of π1(Symp(Xr−1, ω))
for an ω on Xr−1 with b2 = r, then after blowing up k equal size small balls, the lower bound
of rank π1(Symp) is equal to the upper bound.

We are going to work with the following configuration of curves

Notice that by the base change, we can regard Xn as n− 1 point blow-up of S2 × S2 or F1.
This configuration of curves is a collection of the section class and n-1 fiber classes. Hence
the complement is diffeomorphic to C2. When the blowup sizes are small, the complement is
convex as a symplectic domain.

We can also write down the following diagram:

(11)
Sympc(C2, ωstd)) −−−−→ Stab0(C) −−−−→ Stab(C) −−−−→ Symph(X,ω)y y y

Zn−2 (S1)n−1 ×Diff+(S2, n− 1) C0 ≃ JC
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Now let us write down the following long exact sequence:

(12)

· · · → Z → π1(Symph(Xm, ω)) → π1(S)
ϕ−→ π0(Diff+(S2,m− 1))

ψ−→ π0(Symph(Xm, ω)) → 0

Let us also note the following abelian version of the sequence:

(13) Z → π1(Symph(Xm, ω)) → H1(S)
f−→ Ab(Im(ϕ)) → 0.

Then let us prove the following Lemma:

Lemma 5.2. The Z factor injects into π1(Symph(Xm, ω)) for

• a toric symplectic form which admits a divisor in Figure 5.1;

• or any symplectic form that is close enough to point A in the normalized reduced cone
( notice that this form can only be of type A or D).

Proof. Let us first deal with the toric case. By assumption, we can assume that the divisor in
Figure 5.1 is part of the toric boundary. Then by [KKP15], every circle action on a symplectic
toric 4-manifold can be extended to a torus action. Hence the circle action from Stab(C)
can be realized as a factor of the torus action. By Theorem 1.3 and 1.25 of [MT10], a torus
action injects on to π1(Symp). Hence we have the injective map from Z to π1(Symp), for a
toric symplectic form which fixes the given divisor.

Now we deal with the second case when a symplectic form is close enough to A in the reduced
symplectic cone. First note that this form admits a circle action when the section area is
large enough. This is because there is a circle action on S2 × S2 or F (1) which rotates each
of the fibers. There is a smooth circle action after the blowup, which still rotates the generic
smooth fiber and rotates each component of the singular fibers. When the section area is
large enough, this smooth circle action can be made Hamiltonian because of the weight of the
Karshon graph. More precisely, we start with S2×S2 where the base area is at least 4n of the
area of the fiber ( or F (1) where the area of the positive section is at least 4n+2 of the fiber
area). Then start with the circle action of the highest weight on S2×S2 (F (1) respectively),
by Lemma 3.2 in [KK07] conditions (1)(2) and (3), we can inductively blowup k, 1 ≤ k ≤ n
(1 ≤ k ≤ n+ 1 respectively) points of weight at most half of the size of the fiber class. Note
that the condition 4n on S2 × S2 ( or 4n + 1 on F (1)) are sufficient conditions, and they
are equivalent to the form class being close enough to the point A in the normalized reduced
cone. Also, the circle action agrees with the smooth action which fixes rotates the generic
smooth fiber and rotates each component of the singular fibers. Now we find that the circle in
Stab(C) can be realized as such a circle action, which is obtained from the equivariant blowup
of the circle action on S2 × S2 or F (1). Also, note that the (minimal) circle action injects
into π1(Symp(X,ω)) when X = S2 × S2 or F (1). We claim that the blowup circle action

also injects into π1(Symp(X̃, ω̃)). The reason is the following: in the argument of Corollary

6.4 in [McD08], the counting of the rank of π1(Symp(X̃, ω̃)) is guided by the Hamiltonian

bundle structure. The Hamiltonian bundle on X̃ is spanned by the blowup of the original
Hamiltonian bundle on X and the exceptional classes. Notice that the original Hamiltonian
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bundle corresponds to the circle action and the blowup Hamiltonian bundle corresponds to
the blowup circle action. Hence we have the desired injection from Z to π1(Symp).

□

5.2. Type D forms on CP2#nCP2. For the convenience of computation, we divide all
type D forms into 2 families:

• MA or MALi1 · · ·Lik .

• ME or MELi1 · · ·Lik .

Notice that when the MA and ME cases are done, every other case can be computed using
Proposition 5.1.

5.2.1. MA or MALi1 · · ·Lik cases.

Proposition 5.3. The rank of π1(Symph(X,ω)) for the MA,MAE, · · · , cases of a n−points
blow up:
• if ω ∈ MA, then rk(π1) = n, and in particular, we know it is free abelian, i.e. π1(Ham) =
Zn.
• If ω lies on any other lines, we can always find a lower bound such that it equals the upper
bound given by [McD08] and Proposition 3.21 in [LLW22].

5.2.2. ME or MELi1 · · ·Lik cases. We start with the ME on a 6-point blowup here. Con-
sider the following configuration together with E6.

2H − E1 − E2 − E3 − E4 − E5

E1 E2 E3 E4 E5

The complement T∗RP 2 has Sympc weakly homotopic to Z. The homotopy LESs of the
diagram will have an S1 in the π1 level of the fiber, and every higher πi being trivial.

For the space of configuration, its fundamental group is generated by 5 curves E1 −
E6, · · · , E5 − E6, 2H − E1 − · · · − E5 − E6. Then at least, the fundamental group has rank
6.

On the other hand, by blowing down to the monotone 5-point blowup, the upper bound of
the rank of the fundamental group is 6. Hence the rank is precisely 6.

For more points blow up, we will consider the above configuration together with E6, E7, · · · , En.
A similar computation will give us that the rank is precisely the number of symplectic classes
among E1 − Ei, · · · , E5 − Ei, 2H − E1 − · · · − E5 − Ei, Ei − Ej , where i, j ≥ 6.

Combining the above discussion, we have the following theorem:
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Proposition 5.4. For a rational surface whose Lagrangian system is of type A or D in the
c1-positive symplectic cone,

Q = PR[π0(Symph(X,ω))] +Rank[π1(Symp(X,ω))]− rank[π0(Symph(X,ω))]

is a constant only depending on the topology. In particular, Q = 1+2+ · · ·n for the n points
blow up of CP 2.

5.3. Proof of the Main theorem and applications. The well-founded relation allows us
to do well-founded induction to prove results about Rank of π1(Ham(M,ω)). Recall that
to do well-founded induction we only need to prove the minimal case and the induction
step.

There has been a complete understanding of π1(Ham(Xn, ω)) for any symplectic forms when
n ≤ 5, see [LL20] and [LLW22]. In this section, we use those results to completely calculate
π1(Ham(Xn, ω)) of any Xn for type A or D in the c1-positive symplectic cone.

Note that we need the minimal case Dn−1 on Xn. Then we need to prove that if u satisfies
statement P (u), then inductive steps u ≺ v give the statement P (v).

Proof of Proposition 5.1

Proof. Then for the upper bound, we have Rr + rk. For the lower bound, we have

rank(π1(Sn))− rank(Ab(PBn−1)) + 1 + rank(π0Symp(Xn, ωn)).

Now we try to relate rank(π1(S)) with Rr.

Notice that we assume Rr agrees with the lower bound. This means that we have

(14) Rr = rank(π1(Sr))− rank(Ab(PBr−1)) + 1 + rank(π0Symp(Xr, ωr)).

Now we compare rank(π1(Sn)) with rank(π1(Sr)). There are (r − 2)k new classes of curves
with Es − Et, where 1 ≤ s ≤ r, r < t ≤ n. There are (r − 2)k new classes of curves with
H − E1 − Ei − Ej , where 1 < i ≤ r, r < j ≤ n. There are (k − 1)k/2 new classes of curves
with H − E1 − Eu − Ev, where r < u, v ≤ n. Finally, there are k new classes of curves with
2H −E1 − · · · −E5 −Ew, where r < w ≤ n. Hence the difference between rank(π1(Sn)) and
rank(π1(Sr)) is

(r − 2)k + (r − 2)k + (k − 1)k/2 + k =
1

2
k2 + 2rk − 7

2
k.

Then we compare the upper bound with the lower bound and compute their difference:

(Rk + kr)− (rank(π1(Sn))− rank(Ab(PBn−1)) + 1 + rank(π0Symp(Xn, ωn))).

Plug in equation (14), we have

rank(π1(Sr))− rank(Ab(PBr−1)) + 1 + rank(π0Symp(Xr, ωr)) + kr(15)

−(rank(π1(Sn))− rank(Ab(PBn−1)) + 1 + rank(π0Symp(Xn, ωn))).

Notice that π0Symp(Xn, ωn)) = π0Symp(Xr, ωr)), by [LLWxi] Proposition 3.5.

Now this is

−(
1

2
k2 + 2rk − 7

2
k) + (k + r − 2)(k + r − 5)/2− (r − 2)(r − 5)/2 + kr = 0.
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Hence we completed the proof. □

6. Applications and Discussions

We shall apply the stability results and computation of π1(Symp) to the space of ball packings
and circle actions.

6.1. On space of embeddings of balls. Let us prove that the space of embeddings also has
homotopy stability in the π1 level when the sizes of the ball satisfy the c1 positive condition
when blowing up. We still focus on the minimal blowing down process.

Let M be a rational 4-manifold, ω on M a c1 positive symplectic form. Let [ω] be

(1|m1, · · · ,mk) and we write (⃗c) be the n-k dimensional vector (c, · · · , c). We further
assume that the blow up symplectic class (1|m1, · · · ,mk, c, ·, c) is also c1 positive on

M#(n− k)CP 2.

By [LP04, Theorem 2.5(ii)], we have the following fibration

(16) Symp(M,⊔iBi(c);ω)U(2) → Symp(M,ω) → Emb∗ω(B
4(c⃗),M),

where Emb∗ω(B
4(c⃗),M) is the space of (ordered, parametrized) embeddings from m disjoint

balls of capacity c to M .

Theorem 6.1. (1) The π1 of Emb∗ω(B
4(c⃗),M) is in the stable chamber of π1(Symp) as

in Proposition 3.1.

(2) Notation as above, Emb∗ω(B
4(c⃗),M) is simply connected if c < mk.

Proof. We then have the following portion of the commutative diagram of long exact sequence,

induced by the inclusion map Emb∗ω(B
4(δ⃗),M)

ϕδ→ Emb∗ω(B
4(c⃗),M).

(17)

π1(Symph(M̃, ωc⃗))
ϕ1δ−−−−→ π1(Symph(M̃, ω

δ⃗
))

i∗

y y
π1(Symph(M,ω))

∼=−−−−→ π1(Symph(M,ω))y y
π1(Emb∗ω(B

4(c⃗),M)
α−−−−→ π1(Emb∗ω(B

4(δ⃗),M)

β
y βδ

y
π0(Symph(M̃, ωc⃗))

ϕ0δ−−−−→ π0(Symph(M̃, ω
δ⃗
))

i∗

y y
π0(Symph(M,ω))

∼=−−−−→ π0(Symph(M,ω))

Note that the maps ϕ1
δ (by Proposition 3.1) and ϕ0

δ (by [LLWxi] Corollary 3.28) are isomor-
phisms, when c < mk. Then it follows from five-Lemma that the middle map α is also an
isomorphism.
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Then statement (1) follows from the fact the pi0 and π1 of Symp have the same stability
chamber for any Xk.

Now we prove statement (2): We shall compare the ball sizes of c with very small ball sizes δ.

First it is straightforward to see that the space Emb∗ω(B
4(δ⃗),M) is simply connected for small

enough δ. The proof is similar to [LLW22] Theorem A.1. We start with Emb∗ω(B
4(⃗0),M),

which is the configuration space, and it is simply connected SinceM is itself simply connected.
Then statement (2) follows from diagram (17) and five Lemma.

□

6.2. A discussion on Hamiltonian loops vs Circle actions. This subsection is a discus-
sion on circle actions and Hamiltonian loops. Note that for all circle actions here we assume
it is effective and Hamiltonian.

It is known to Kedra that a blowup of an algebraic surface of general type admits a Hamil-
tonian loop that is not represented by circle actions. In the rational surface case, [Anj+23]
gave an example that some loops can be circle-representable but under deformation become
non-representable by circle actions. Inspired by [Anj+23], and a private communication with
Silv́ıa Anjos, we have the following discussion on Circle actions vs Hamiltonian loops.

Example 6.2. Consider Xk, k ≥ 5, the symplectic form ω in class [1, 13 ,
1
3 ,

1
3 ,

1
3 , ϵ, · · · , ϵ],

ϵ << 1
3 .

By Proposition 2.8 and Proposition 5.1, the rank of π1(Symp(Xk, ω)) is 4(k−4). Meanwhile,
there is no circle action compatible with this symplectic form. The reason is that any circle
action on the blowup can be equivariantly blown down(cf. [KKP15]). It is known to [HK19]
and [KK07] that there is no circle action on the monotone 4-point blow ( a for in class
[1, 13 ,

1
3 ,

1
3 ,

1
3 ] on X4). We remark that after a base change (4), as a 3 blowup of size of 1

2 from

§2 × S2, with a symplectic form µσ ⊕ σ. Note that µ = 1 correspondence to 1
3 blowup from

CP 2.

This case is similar to Kedra’s example in the rational surface case.

Example 6.3. Let’s recall the example of [Anj+23]: On X5,, the symplectic form ωa in class
[1, a, 1−a2 , 1−a2 , · · · , 1−a2 ], a ≥ 1

3 .

By Theorem 1.3 of [LLW22], the rank of π1(Symp(Xk, ω)) is 5. In [Anj+23], it is shown that
some of those Hamiltonian loops have circle actions, and some do not. Further, this changes
as one deforms ωa by varying a. Their argument is to analyze the possible Karshon graph
(cf. [Kar99]) up to symplectomorphism, for different a. To simplify the discussion, they did
a base change using (4).

One can always obtain the following types of Karshon graphs:
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When µ > 3
2 , which means a > 1

2 , one has the following two types of new Karshon graphs

When 1 < µ ≤ 3
2 , which means 1

3 < a < 1
2 , there are 4 circle actions from Figure 6.3

and this means some Hamiltonian loops not represented by circle actions. When µ > 3
2 or

equivalently 1 > a > 1
2 , there are extra circle actions but they represent the same element in

π1(Symp(X5, ωa)).

Note that this is a special case near the neighborhood of the monotone point ωmon =
[1, 13 , · · · ,

1
3 ]. In [Anj+23], it conjectures that there is a neighborhood of ωmon in the sym-

plectic cone such that there are not enough circle actions to represent all Hamiltonian
loops.

Example 6.4. This is a direct generalization of the previous example 6.3 and [Anj+23].
Let’s consider X6,, the symplectic form ωa in class [1, a, 1−a2 , 1−a2 , · · · , 1−a2 ], 1 > a ≥ 1

3 .

When 1 < µ ≤ 3
2 , which means 1

3 < a < 1
2 , there are no circle actions. Because any Karshon

graph needs to be a blowup from Figure 6.3, but any curve on Figure 6.3 has area less than
1
2 and cannot be blown up. This means all (6, by Proposition 5.1) Hamiltonian loops are

not represented by circle actions. When µ > 3
2 or equivalently 1 > a > 1

2 , there are circle
actions from blowing up the top or bottom curves in Figure 6.3, and they represent certain
Hamiltonian loops.

Further, on Xk, k ≥ 6, any symplectic form obtained by a ϵ blowup of ωa on X6 has the above
property.
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Observe that when µ > 2, there are plenty of circle actions by blowing up the Karshon graphs
in 6.3. It is an interesting question to check whether this forms a basis for π1(Symp(X5, ωa)),
and the method of [Anj+23] applies here.

Lemma 6.5. For mu > k−3
2 , or equivalently a > k−3

k−1 , there are Hamiltonian circle actions
on Xk.

Proof. When mu > k−3
2 , there are Karshon graphs giving circle actions

• When k is odd, the bottom fixed curve is given by B− k−3
2 F, and the top is given by

B + k−1
2 F − E1 − · · · − Ek−1.

• When k is even, the bottom fixed curve is given by B − k−4
2 F − E1, and the top is

given by B + k−2
2 F − E2 − · · · − Ek−1.

The vertical curves are given by Ei and F−Ei, making the Karshon graph a genus 0 Lefschetz
fibration with k−1 isolated singular fibers. The circle action rotates the generic fiber in class
F , and rotates each component of the singular fiber F = Ei + (F − Ei). □

Remark 6.6. It is not straightforward to show the converse of Lemma 6.5. The reason is
there are abundant multiple section curves in class pB + qF −

∑
riEi, and it is not easy to

exclude all possible Karshon garphs with those curves.

Combine Lemma 6.5 and the stability results, we end this section with the following conjec-
ture:

Conjecture 6.7. (1) Xk with a symplectic form on MA has Hamiltonian circle actions
if and only if µ > k−3

2 or equivalently, a > k−3
k−1 .

(2) Moreover, for Xk with a reduced symplectic form, that is c1-nonpositive, or is c1-
small (c1 · [ω] = ϵ), any Hamiltonian loop cannot be represented by Hamiltonian circle
actions.
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