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Abstract. We continue the work of [9] to prove that for any non-minimal ruled surface
(M,ω), the stability of π0, π1 of Symp(M,ω) is guided by embedded J-holomorphic curves.
Further, we proved that for any fixed sizes blowups, when the area ratio µ between the section
and fiber goes to infinity, there is a topological colimit of Symp(M,ωµ). In particular, when
the blowup sizes are all equal to half of the area of the fiber class, there are non-trivial
symplectic mapping classes in Symp(M,ω) ∩ Diff0(M), which are not Dehn twists along
Lagrangian spheres.
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1. Introduction

In this note, we study some topological aspects of symplectomorphism groups, along the
line of [1, 3, 29, 17, 4, 2, 7, 19, 21, 6], etc, We’ll address the topological behavior of the
symplectomorphism groups as the form ωu varies within the symplectic cone. This is a follow-
up note of [9], which addresses the symplectic stability and symplectic isotopy conjecture in
a non-minimal irrational ruled surface setting. Recall that the conjecture informally states
that the symplectic cone has chambers such that symplectomorphism groups have homotopy
groups stable or invariant within the chambers.

The paper [9] established the symplectic stability conjecture for a one-point blow up, and it
left out the discussion for more point blowups. As will be explained in section 3, the difficulty
will be finding enough embedded J-holomorphic curves in given homology classes. This is
the reason that we only partially establish this conjecture for more points blowup.
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More precisely, we will focus on the stability of π0, π1 of Symp(X), where X = Mg#nCP 2

, while the symplectic form varies in a family such that ωt(Σg) → ∞ and other symplectic
areas remain the same.

Let Mg = Σg×S2. By McDuff’s classification results [28], any symplectic form is diffeomor-
phic to µσΣg ⊕σS2 for some µ > 0, up to diffeomorphism and normalization. Such classifica-

tion result also holds in the blowups Mg#nCP 2 [24]: if one picks up ω on Mg#nCP 2, then
after normalization ω has areas (µ, 1, e1, · · · , en) on the homology classes B,F,E1, · · · , En,
where µ > 0, e1 + e2 < 1, 0 < ei < 1, e1 ≥ e2 ≥ · · · ≥ en, e1 < µ, choosing the standard basis
B,F,E1, · · · , En and associate coefficients (µ, 1, e1, · · · , en) to get a cohomology class, then
the symplectic forms in this cohomology class are isotopic. cf. [27, 25]. After normalization,
the vector u = (µ, 1, e1, · · · , en) determines all possible symplectic form cohomology classes
and belongs to a convex region ∆n+1 in Rn+1, whose boundary walls are n-dimensional con-
vex regions given by linear equations. We will be concerned with symplectic deformations
inside this region ∆n+1 for the n-points blowups.

Here is a mega conjecture about how the deformation of ω changes the topology of
Symp(M,ω) :

Conjecture 1.1. Let (M,ω) be a symplectic 4-manifold. We partition the symplectic cone
of M as above, if possible. If ω1 and ω2 belongs to the same chamber of the symplectic cone
of M , then πi(Symp(M,ω1)) = πi(Symp(M,ω2)),∀i > 1.

Recall that in [9], Conjecture 1.1 is proved for one point blowup of ruled surface. Here we
prove the conjecture for π0, π1 of Symp(M,ω) for other non-mimimal ruled surfaces:

Theorem 1.2. Let M be Σg×S2#kCP 2 Suppose µi > g, i = 1, 2 for [ω1] = [µ, 1, c1, · · · , cn],
[w2] = [µ + δ, 1, c1, · · · , cn], δ > 0, then the groups π0 and π1 of Symp(M,ω1) and
Symp(M,ω2) are the same.

This also grants that there is a topological colimit when µ→∞.

And in the following case, we can fully establish the stability conjecture.

Theorem 1.3. The homotopy type of Gg
µ,n is constant for k

2
≤ µ ≤ k+1

2
, for any integer

k ≥ 2g. Moreover as µ passes the half integer k+1
2

, all the groups πi, i = 0, · · · , 2k + 2g − 1
do not change.

Moreover, in the special case when the blowup sizes are all equal to half of the area of the
fiber [S2], we have the following theorem on the disconnectedness of the topological colimit
Dng . For a more detailed description of Dng , see Definition 4.5.

Proposition 1.4. Take Mg#nCP 2 with a form in the class [µ, 1, 1
2
, · · · , 1

2
]. Then let µ go

to ∞.

(1) Dng is weakly homotopic to Gn
∞,g.

(2) The group Dng is disconnected when g ≥ 2.

(3) When µ → ∞, s.t. for i = 0, 1, πi(G
n
u,g) = πi(G

n
∞,g) for i ≤ min{Cod(u)} − 1, and

hence the groups Gn
u,g are disconnected for g ≥ 2.
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Notice that the above theorem extends the results of [9] from the one-point blowup of a
minimal ruled surface to arbitrary points blowups. It remains open what the group π0D

n
g

is, and whether Proposition 1.4 holds for other symplectic forms. We hope to explore these
questions in a future work.

Acknowledgements. We are grateful to Richard Hind, T-J Li, Dusa McDuff, Weiwei Wu,
Michael Usher and Weiyi Zhang for helpful conversations.

2. Preliminary

By [25], if M is a closed, oriented 4-manifold with b+ = 1, the symplectic canonical class is
unique once we fix u = [ω], and we denote it by Ku.

Let E be the set of exceptional sphere classes, and CM denotes the symplectic cone.

In Theorem 4 of [25], Li-Liu showed that if M is a closed, oriented 4-manifold with b+ = 1
and if the symplectic cone CM is nonempty, then

CM = {e ∈ P |0 < |e · E| for all E ∈ E}.

Note that the way we partition the normalized symplectic cone is by looking at the homology
classes of potential symplectic curves. To that end, we will now fix some notation:

Definition 2.1. Let Sω denote the set of homology classes of embedded ω-symplectic curves
and Kω the symplectic canonical class. For any A ∈ Sω, by the adjunction formula,

(1) Kω · A = −A · A− 2 + 2g(A).

For each A ∈ Sω we associate the integer

codA = 2(−A · A− 1 + g).

We can define Su, where u = [ω] accordingly, only using the cohomology data of ω. We are
going to denote S<0

u by the subset of Su having negative self-intersections.

Remark 2.2. • By Lemma 2.4 in [6], Su = Sw.

• By the main theorem in [26], the negative self-intersection classes that admit embedded
representatives are exactly those that have positive pairings with the class ω. Namely,
we can find some integral class u′ that admits some embedded curve in those classes
of S<0

u , and the symplectic inflation of [26] allows us to change the class u′ into u.

Note that the way we do partition for rules surfaces is by looking at the inequality u ·A ≤ 0,
where A ∈ S<0

u and Cod(A) > 0. In particular, by wall, we refer to those subsets {u|u ·A =
0, A ∈ S<0

u of the symplectic cone.

Here we draw the picture for the symplectic cone (with chambers) of a two-point blowup of
Σg × S2 :
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Notice that in this figure, the Y−axis means
the area ration µ, X and Z are blowup size
of E1, E2 respectively. Clearly Y goes to ∞.
The red triangles are the walls defined by the
curve classes, and the tetrahedron are stable
chambers in Conjecture 1.1.

3. Strata of Aω and stability under inflation

In this section, we prove the theorem 1.2 and 1.3 by inflating along embedded or nodal
J-holomorphic curves.

3.1. Curves. Let us first recall several results from [35]. Here we translate Zhang’s result
into our basis B,F,E1, · · · , En of H2(X,Z).

Theorem 3.1 (Theorem 1.1 or 3.4 in [35]). Let M be an irrational ruled surface, and E
an exceptional class. Then for any tamed J and any subvariety in class E, each irreducible
component is a rational curve of negative self-intersection. Moreover, the moduli space ME

is a single point.

Theorem 3.2 (Theorem 1.2 in [35]). Let M be an irrational ruled surface of base genus
h ≥ 1. Then for any tamed J on M ,

(1) there is a unique subvariety in the positive fiber class F passing through a given point;

(2) the moduli space MF is homeomorphic to Σh, and there are finitely many reducible
varieties;

(3) every irreducible rational curve is an irreducible component of a subvariety in class
F .

Notice that here a rational curve means the domain genus is 0, and by the adjunction formula
each component has to be embedded.

Hence we have the following existence of curve result:

Proposition 3.3 (Proposition 3.6 in [35]). There is a smooth section of the irrational ruled
surface, i.e. there is an embedded J-holomorphic curve C of genus h such that [C] · F = 1.

This grants that there is an embedded curve in the class B + kF −
∑

i ciEi, where k <
g.
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Moreover, the discussion of [35] Corollary 3.3 confirms that gJ(E) ≥
∑

i gJ(Ci), where gJ is
the J-genus defined by (e · e+KJ · e)/2 + 1, and E =

∑
iCi is the cusp decomposition of E

where Ci’s are the irreducible components.

We summarize it as the following Lemma:

Lemma 3.4. In ruled surfaces, the irreducible components of the stable curves of a Gromov
limit for an exceptional curve all have gJ = 0.

Proof. 0 = gJ(E) ≥
∑

i gJ(Ci), and each gJ(Ci) ≥ 0. Hence all gJ(Ci) = 0. �

3.2. Stratification of Aω. The following statement is straightforward from the degenera-
tion of rational curves:

For curves with prescribed singularities, after Definition 3.10 we are going to prove that the
strata so that the fiber class curves with curve type E and {C,D} are homological only. For
the rest strata, we will show that they are subsets of Fréchet manifold with codimension 4
or higher.

Definition 3.5. Let ē be the collection of homology classes of the irreducible component of
a stable curve in the class E, and let Aē be the space of J ∈ Aω such that there is a stable
(not necessarily embedded) curve of type ē being J-holomorphic. Here, by a stable curve of
type ē and

Lemma 3.6. 1) Aē is an open subset of Aω if and only if ē = {E}.
2) Aē is of codimension 2 in Aω only if ē = {C,D}, where C2 = −2 and D ∈ E. Further-
more, in this case the representative in class C has to be an embedded (-2) sphere

Proof. Consider the stable curve in an exceptional class, E =
∑

iCi where each Ci is possibly
multiple covered. Let gJ(A) be the virtual genus of class A, given by A·A+K·A

2
+1. By Lemma

3.4, 0 = gJ(E) ≥
∑

i gJ(Ci) ≥ 0. Hence gJ(Ci) = 0 for each Ci. Then by the connectedness
of
∑

iCi, there must be at least one component with self-intersection at most −2. If this
component is embedded and the only negative self-intersection −2 class, then it belongs to
the Cod=2 part.

Otherwise, by the virtual dimension computation (Theorem 1.6.2 of [16] for example ) and
transversality for the underlying simple representative, the stratum of such J has codimen-
sion larger than 2. Here are more details:

If the only curve with square less than −1 is a simple class with self-intersection -2, then it
has to be of {C,D} by computing the square and pairing with K. More precisely, assume
E = C +

∑
Di +

∑
Pj, so that C2 = −2, D2

i ≥ −1, P 2
j ≥ 0 By gJ(C) = gJ(Di) = 0, we have

K ·C = 0, K ·Di = −1 and K ·PJ < −1. Also, we have K ·(C+
∑
Di+

∑
Pj) = K ·E = −1.

Hence there can only be precisely one Di.

For all other cases, let’s first recall that for a simple class A, with a J-holomorphic represen-
tative, the index of A is given by 2g − 2− 2KJ · A, where KJ

• If there are irreducible components with square less than −2.



6 OLGUTA BUSE AND JUN LI

Let E = C1 +
∑

i>1Ci, such that C2
1 < −2. If C1 has a simple representative, then we

are done. Now let’s deal with the case C1 is multiple covered. Let C1 = mC ′1,m > 1
such that C ′1 has a simple representative. Notice that we immediately know that
(C ′1)2 ≤ −1.

Then we have 0 = 2gJ(C1) = 2 +m2(C ′1)2 +mKJ · C ′1. This means that

KJ · C ′1 =
−2−m2(C ′1)2

m
< 0.

Hence the simple representative has index less than 2. This means that Aē has
codimension greater than 2 in Aω.

• If there are more than one components with square −2.

Now let’s assume that E = C1 + C2 +
∑

i>2Ci, such that C2
1 = C2

2 = −2. If both
of them have simple representatives, then we are done. Now lets assume some of
them are multiple covered, i.e. C1 = pC ′1, C

2 = qC ′2, p, q ≥ 1. Now we still have
0 = 2gJ(C1) = 2 + p2(C ′1)2 + pKJ · C ′1. This means that

KJ · C ′1 =
−2− q2(C ′1)2

q
< 0.

Similarly, the index of C ′2 is also non-positive. Hence both simple representatives
has non positive indices. By the transversality of the simple representatives, Aē has
codimension greater than 2 in Aω.

�

Now we are going to stratify our Aω as follows:

Definition 3.7. We highlight some subsets of Aω and will prove that they behave well under
Fredholm theory in Lemma 3.10.

• We call Atopω to be the collection of J ∈ Aω characterized by the existence of an
embedded J-holomorphic curve in B + kF −

∑
Ei, k ≤ g and embedded curves in

classes Ei and F − Ei.

• A2
ω, is the collection of J characterized by 1) existence of exactly one exceptional class

having stable representative of homology type {C,D}, s.t. C2 = −2, D2 = −1 as in
Lemma 3.6, 2) all other exceptional classes embedded, and 3) B + kF −

∑
Ei, k ≤ g

embedded.

• Ahigh ⊂ Aω, and for any J here, there exists an embedded negative curve in the class
B −mF −

∑
Ei, so that m > g or B −mF −

∑
Ei has a negative index, or there is

a singular stable representative of the exceptional classes.

Remark 3.8. • Ahigh is a collection of strata that are subsets of Fréchet submnaifolds
with codimension 4 or higher.

• Cannot establish the full conjecture because Ahigh is not well understood in the general
case.

• Ahigh is well understood in the [µ, 1, 1
2
, · · · 1

2
] case.
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section class embedded exceptional not too badly deg deg

B + kF −
∑
Ei, k ≤ g Atopω A2

ω Ahighω

B +mF −
∑
Ei,m > g, Ahighω Ahighω Ahighω

Table 1. Partition

Remark 3.9. Note that the strata can be further decomposed but we won’t do it.

Lemma 3.10. Aω is the disjoint union of the above 3 parts:
Atopω has Cod=0 in Aω; the union of AS,ω has Cod = 2 in Aω,
and the complement of Aω and the union of AS,ω has Cod > 2.

Proof. The Cod > 2 part is an index computation. Since there is always an embedded curve
in the class B+ kF −

∑
Ei, k < g. Then the index of such a curve is at least 4. This means

that the corresponding strata have codimension at least 4.

The Cod = 2 apparently has correct codimension in Aω, by the index computation for an
embedded (−2) sphere.

In particular, if J belongs to the Cod=2 part, by Lemma 3.6 there’s exactly one exceptional
curve E breaks into C + D where C is the unique -2 curve and D is another exceptional
curve.

Now we deal with the codimension 0 part, and show that there is a curve in class B + kF −∑
Ei, k ≥ g.. Firstly, the existence of such a curve is guaranteed by Lemma 3.3 and the

openness of the top strata comes from the fact that those higher codimension strata are
closed.

�

Lemma 3.11. For the exceptional class E, assume for a given J tames ( or is compatible
with) ω, it has homology type (2) in 3.6, i.e. the stable curve has two irreducible component
classes C and D. They each has an embedded representative and intersects each other
transversely. For such J , there is an J-tame (or compatible) inflation along the embedded
curves in classes C,D such that ω′ tames (is compatible with J) and [ω′] = [ω]+tP.D.(E), 0 ≤
t ≤ ω(E).

Proof. See Appendix for a more general discussion. �

3.3. Stability of Symp and inflation. Firstly, note that one can always inflate along the
curve in the class F , we have the following Lemma which allows us the find an inclusion
between different [ω].

Lemma 3.12. Let u = [µ, 1, c1, · · · , ck], and u′ = [µ+ε, 1, c1, · · · , ck], ε > 0. Then Au ⊂ Au′.
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Direction Strata Class to inflate Proof Size/Note

↑ or ↓ Au,C Ei, F − Ei ,F Lemma 3.15 Foliation and exception-
al curve

↑ or ↓ Au,open B + xF −
∑
Ei,F − Ei Lemma 3.15 Foliation and exception-

al curve

−→ Any strata F Lemma 3.14 Foliation allows any size

Table 2. Inflation process

Proof. This is done by inflation along the embedded J-holomorphic curve in the class F,
whose existence is granted by Lemma 3.2. �

Then we use the above partition of the space A[u], when µ > g to obtain the following:

Proposition 3.13. In the following cases, the strata have inclusion relations:

(1) Au1,C = Au2,C, if u1 = [µ, 1, ci], u2 = [µ, 1, ci], ∀C ⊂ S−2.

(2) Au,open ⊃ Au′,open, where u = [µ, 1, ci], u
′ = [µ+ ε, 1, ci], and for all µ > g, ε > 0.

(3) Au,C ⊃ Au′,C, u = [µ, 1, ci], u
′ = [µ+ ε, 1, ci], ∀∅ 6= C ⊂ S−2 and for all µ > 1, ε > 0.

Proof. (1) is covered Lemma 3.14. (2), (3)are covered by Lemma 3.15

�

Lemma 3.14. For any stratum, including the open strata, Au,C ⊂ Au′,C, u = [µ, 1, c], u′ =
[µ+ ε, 1, c], and for all µ > 1, ε > 0.

Proof. By [35] Theorem 1.6, we known that for each J ∈ Au,C, through each point of M
there is a stable J-holomorphic sphere representing the fiber class F = [pt× S2].

Then we can inflate along the embedded curve F . Let us start with u = [µ, 1, c].

Inflating, we obtain a form in tP.D[F ] + [µ, 1, c]= [µ+ t, 1, c], for all t ∈ [0,∞).

�

Lemma 3.15. For Au,open ⊃ Au′,open and Au,C ⊃ Au′,C, C ∈ S−2, where u = [µ, 1, ci], u
′ =

[µ+ ε, 1, ci], and for all µ > g, ε > 0.

Proof. First, by Lemma 3.10, for any strata in this Lemma, there is an embedded curve in
class A = B + xF −

∑
Ei, where x < g.

Note that the process of inflating along this curve will increase the areas of the fiber class F
and the Ej, if Ej · A > 0. We can then inflate along Ej such that the area of Ej increases
proportionally. Hence without loss of generality, we can assume A = B + xF , x < g. Also,
note that x can be a negative number. Then we can inflate along it. And let’s start with
u = [µ, 1, ci].
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By inflating, we obtain a form in

tP.D[B + xF ] + [µ, x, ci] + ti[1, 0, ci] = [µ+ tx+
∑

ti, 1 + t, ti + ci],

which normalized to (
tx+ µ+

∑
ti

1 + t
, 1,

ci + ti
1 + t

)
,

∀t ∈ [0,∞).

Note that we will choose ti/t proportional to ci, that is, we always take ti = cit. Then
in the resulting symplectic class, the area of the exceptional curves is always stable after
normalization.

Then we just need to make sure that as long as t → ∞, the resulting symplectic class

covers µ ≥ g cases. Note lim
t→∞

tx+ µ
∑
ti

1 + t
= x ≤ g. Hence we proved the statement of the

Lemma. �

Proposition 3.16. Let M be Σg × S2#kCP 2 Suppose µi > g, i = 1, 2 for ω1, w2, then the
groups π0 and π1 of Symp(M,ω1) and Symp(M,ω2) are the same.

Proof. Follows from Proposition 3.13 and the following commutative diagram:

(2)

Symp(M,ω1) ∩Diff0(M) −−−→ Diff0(M) −−−→ Aω1y =
y ↪→ y

Symph(M,ω2) ∩Diff0(M) −−−→ Diff0(M) −−−→ Aω2

�

3.4. Stability of equal size 1/2. We can prove the stronger version of the stability result
for equal size 1/2.

Theorem 3.17. Conjecture 1.1 holds for the form in class [µ, 1, 1
2
, · · · , 1

2
], µ > g.

Here we first describe the chamber structure and then provide a proof.

Notice that the space of such forms in class [µ, 1, 1
2
, · · · , 1

2
], µ > g is a line. The curves are

given by B−kF or B−kF −
∑
Ei. Notice that each Ei has area 1

2
, and hence the chambers

are those integer points or half integer points.

Hence the precise statement is the following:

Theorem 3.18. The homotopy type of Gg
µ,n is constant for k

2
≤ µ ≤ k+1

2
, for any integer

k ≥ 2g. Moreover as µ passes the half integer k+1
2

, all the groups πi, i = 0, · · · , 2k + 2g − 1
do not change.

Proof. The proof is basically the same as that in Proposition 3.13. The only thing added
here is the inflation on the higher codimensional strata, which is done by inflating along the
embedded curve in class B − kF −

∑
Ei.

The rest argument follows from Theorem 3.16. �
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Explicit “fragile elements” in πk could be detected by circle actions in [14] and Whitehead
product. One can do this using a very similar approach as in [8].

4. Singular foliations and topological colimit for equal size blowups

The stability Theorem 3.16 grants us that the homotopy colimit Gn
∞,g (for each horizontal

line fixing the blowup size) exists.

We are going to use the relationship between the space of singular foliations and the space
of almost complex structures to establish a smooth diffeomorphism model for Gn

∞,g. We will
show that this smooth diffeomorphism model is disconnected and hence conclude that Gn

∞,g
is disconnected.

4.1. The equal size 1
2

blowup. Proposition 3.14 and the following homotopy commutative
diagram shows that the homotopy colimit exists:

(a) Gu → Diff0(Mg#CP 2) → Au
↓ ↓= ↓
Gu′ → Diff0(Mg#CP 2) → Au′ ,

(b) Gu → Gu′

↘ ↓
Gu′′

Remark 4.1. Zhang’s Lemma in [35] provides that for each J there is a J-holomorphic
singular foliation when we have an equal size blowup of 1

2
.

This is because any exceptional curve has the minimal area in this case and they can never
degenerate.

We are going to use the following singular foliation in the smooth (topological) category to
prove that the colimit is not connected:

Definition 4.2. A singular foliation by S2 of Σg × S2#CP 2 is defined as a foliation with
smooth embedded spherical leaves in the F = [pt × S2] class and one nodal leaf with two
embedded spherical components, each in the class E and F −E respectively. Also, we require
that the complement of the singular leaf is a smooth foliation over Y which is a compact
curve of genus g except on a single point.

Let Fstd be the standard blow up foliation by Jstd-holomorphic leaves. Note that if we
blowdown the complex structure, we obtain the split complex structure on Σg ×S2, and the
induced foliation is the split foliation by the spheres.

Following verbatim the argument in [9], we have the following Lemma on the space of
foliations and transitive action, when there is only finitely many nodal fibers.

Lemma 4.3. Let Fol0 be the connected component of Fol that contains Fstd. A∞ is weakly
homotopic to Fol0.
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Proof. Observe that there is a map A∞ → Fol0 given by taking J to the singular foliation of
Mg#nCP 2 by J-spheres in class F or F −E. Standard arguments in [32] Ch 2.5 show that
this map is a fibration with contractible fibers. Hence it is a homotopy equivalence.

�

Lemma 4.4. There is a transitive action of Diff0(Mg#nCP 2) on Fol0.

Proof. Since S2 \ pt is compact and simply connected, each generic leaf of this foliation has
trivial holonomy and hence has a neighborhood that is diffeomorphic to the product D2×S2

is equipped with the trivial foliation with leaves pt× S2.

Since our foliation has smoothly embedded leaves and only one nodal leaf, we can find a
2-form transverse to each leaf. And the Poincaré dual of such 2-form is a smooth section,
not passing through the singular point p.

Now let’s take an arbitrary singular foliation F ′ ∈ Fol0 and denote the smooth section by
Σ

′
. We’ll prove that Diff0(Mg#nCP 2) takes this foliation (F ′

,Σ
′
) to Fstd,Σstd where Σstd is

the smooth section (which is indeed Jstd-holomorphic).

Since F ′ and Fstd are in the same path connected component, there is a φ ∈ Diff0(Mg#nCP 2)
sending Σ

′
to Σstd, such that the singular leaf of F ′

goes to the singular leaf of Fstd while
the two singular points are identified. Now let’s fix a finite covering {Di, 1 ≤ i ≤ n} of Σ

′
,

such that the local foliations over Di’s cover the manifold Σg × S2#CP 2.

Then we use partition of unity for the covering {Di, 1 ≤ i ≤ n} of Σ
′
, and for each local

foliation, we apply a φi such that the foliation F ′
under φ ◦ φ1 ◦ · · · ◦ φn agrees with the

foliation Fstd.

Now we have the transitive action of Diff0(Mg#nCP 2) on Fol0. Notice that this action of

Diff0(Mg#nCP 2) does not necessarily preserve the leaf. �

Hence there is a fibration sequence

(3) D ∩Diff0(Mg#nCP 2)→ Diff0(Mg#nCP 2)→ Fol0,

where D is the diffeomorphism preserving the leaves in the foliation Fstd. We denote this
fiber group by Dng .

Definition 4.5. Dng is the elements in the identity component of the diffeomorphisms which
fit into the commutative diagram

Mg#nCP 2 φ→ Mg#nCP 2

↓ ↓
(Mg, {p1, · · · , pn}, Fp)

φ′→ (Mg, {p1, · · · , pn}, Fp)
↓ ↓

(Σg, pt)
φ′′→ (Σg, pt).

Here pi is the intersection point Ei ∩ (F −Ei) of the singular fiber. And the first level of the
downward arrow means that we contract the Ei component. We abuse notation here to still
denote pi for the point in Mg after contracting the curve Ei.
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On the second level, φ′ is a diffeomorphism of Mg keeping the points pi fixed and fixing
the fiber Fp passing through pi fixed as a set, and preserves other leaves in the standard
foliation.

The base Σg is the holomorphic curve Bstd w.r.t the standard complex structure, and the
map downward is obtained by firstly blow down the exceptional sphere and then projects
down to the base curve.

Proposition 4.6. Take Mg#nCP 2 with a form in the class [µ, 1, 1
2
, · · · , 1

2
]. Then let µ go

to ∞.

(1) Dng is weakly homotopic to Gn
∞,g.

(2) The group Dng is disconnected when g ≥ 2.

(3) When µ → ∞, s.t. for i = 0, 1, πi(G
n
u,g) = πi(G

n
∞,g) for i ≤ min{Cod(u)} − 1, and

hence the groups Gn
u,g are disconnected for g ≥ 2.

Proof. For statement (1), note the equation (3) fits into the commutative diagram:

Diff0(Mg#nCP 2) → A∞
↓ ↓

Diff0(Mg#nCP 2) → Fol0,

where the upper map is given as before by the action φ 7→ φ∗(Jstd). Hence there is an induced
homotopy equivalence from the homotopy fiber G1

∞,g of the top row to the fiber D1
g of the

second.

To prove statement (2), first note that we have the following fibration

Diff(Σg, p1, · · · , pn) −→ Diff(Σg) −→ Conf(Σg, n),

Where Conf(Σg, n) is the configuration of n points on Σg.

Taking the right portion of the Long Exact sequence, we have:

1 −→ π1(Conf(Σg, n)) −→ π0[Diff(Σg, p1, · · · , pn)] −→ π0[Diff(Σg)] −→ 1.

Then restricting to Diff0(Σg), we obtain an element in the identity component of π0(Diff(Σg))
but not in the identity component of π0(Diff(Σg, p1, · · · , pn)), where p1, ·, pn are the points
we will blow-up.

It can be explicitly in the following way: choose a path α(t) ⊂ Diff(Σg), t ∈ [0, 2π], pushing
p1, · · · , pn along homologically non-trivial loop in Conf(Σg, n). Now α(0) = id and α(2π) ∈
Diff(Σg, p1, · · · , pn) ∩Diff0(Σg) and note that α(2π) is the desired element.

Next, we lift the path α(t) into dimension 4. To do that, first fix Mg, Σg and choose Jsplit.
There is a natural family α(t) × id ⊂ Diff0(Mg), which act on the leaves in the trivial
manner. For each of t, we have a product complex structure on Mg by pulling back Jsplit
by α(t) × id. We are going to obtain a family of complex structures by blowing up at the

points α(t)|p0 ∈ Mg. This gives us a loop of complex structures Jt on Mg#CP 2 where
J0 = Jstd. Note that by [35], each Jt gives rise to a singular foliation Ft, as in Definition
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4.2. Geometrically, Ft is a loop in Fol0 starting with the standard singular foliation Fstd,
pushing the marked point p along a homological non-trivial circle on the standard base Σg

for time t ∈ [0, 2π].

By the transitivity Lemma 4.4, we can use a path φt in Diff0(Mg#nCP 2) to push F0, so

that φt ◦ F0 = Ft. Note that φt in Diff0(Mg#CP 2) pushes the standard foliation along this
loop.

Now we focus on the diffeomorphism φ2π. First note that φ2π preserves the singular foliation
Fstd, since the foliation F2π = F0 = Fstd. Hence φ2π ∈ D1

g . Also, the above paragraph gives

an explicit isotopy of φ2π to the identity map in Diff0(Mg#nCP 2), through the path φt.

We now show that φ2π is not isotopic to id in D1
g . Suppose there is an isotopy to id, then by

path lifting of the fibration 3, we would have a leaf-preserving element in Diff0(Mg#nCP 2),
so that it is isotopic to identity through a path inDng . Furthermore, this path pushes the given
foliation along the lifting of the loop Ft, t ∈ [0, 2π]. Now apply the diagram of definition 4.5.
We would have an isotopy that would in turn give an isotopy of (Σg, p), connecting the time
2π diffeomorphism to identity. This is a contradiction against the Birman exact sequence.
Hence statement (2) holds.

Statement (3) follows from the stability Theorem 3.16. �

Remark 4.7. When g = 0, one can blow up S2×S2 at k points with equal sizes. It is shown
in [22] that when k ≤ 3, Gk

u,0 is connected for all ω. When k > 3, π0Symph (for a type D
form, which amounts to blowup equal and 1/2 of the size of the fiber ) is a braid group of
k strands on spheres (cf. [20]). This follows the same pattern as Diff(S2, k), which is the
diffeomorphism group of S2 fixing k points. The techniques there are ball swappings. As
pointed out in Example 2.3 of [23], there is a way to construct ball swappings of a ball along
a non-trivial loop in Σg. It is an interesting question to explore whether the construction
here is indeed a ball swapping map. And it will be more exciting to prove using either
construction that the π0Dng is a braid group of n strands on Σa.

Appendix A. Constructing infinite dimensional chart for subsets in Aω

Here we also provide a proof, which addresses the Fréchet (Banach) local chart.

Claim A.1. In Lemma 3.6, if ē is not {E} or {C,D}, then Alē is a analytic subset of
a submanifold which has codimension larger than 2 in Alω. Here Alω and Alē are the C l

counterpart of Aω and Aē respectively.

Proof. With the C∞ topology, Aω is a paracompact infinite-dimensional Fréchet manifold
(smooth manifold locally modeled by Fréchet spaces).

We’ll follow the notation and idea of Taubes [34] Lemma A.1-3, and also the idea of [31]
chapter 3. Let’s denote the space (ē,M) as smooth maps representing spherical classes
{[C1], [C2], · · · , [Cn]} = ē with prescribed singularities. (ē,M)∗ by the space of somewhere
injective maps representing the same classes that belong to W 1,p, p > 2 category. Denote P
as the universal moduli space of simple smooth pseudoholomophic maps representing classes
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{[C1], [C2], · · · , [CN ]} = ē, and J l, P l by the W l,p completion of Jω and P respectively.
Following Taubes [34] Lemma A.2 and A.3, the Banach space topology of P l coming from
inclusion in C l−2(ē,M) × J l is equivalent to the topology coming from the inclusion in
(ē,M)∗ × J l. Meanwhile, the Fréchet topology of P coming from C∞ topology on (ē,M)
and Jω is equivalent to the topology coming from the inclusion in (ē,M)∗ × Jω.

So now we can take everything as subspaces of (ē,M)∗×J l, where 1 < l ≤ ∞. For any given
l, we know P ⊂ P l ⊂ (ē,M)∗ × J l, and take the ∂̄ operators F(ui, J) = ∂̄Jui, 1 ≤ i ≤ N.
Consider the differentials

DF(ui, J) : W k,p(S2, u∗iTM)× C l(M,End(TM, J, ui))→ W k−1(S2,Λ0,1 ⊗J u∗iTM).

Note that on P l, F(ui, J)′s simultaneously vanish, for any 1 ≤ k ≤ 1−1 by elliptic regularity.
The main result proved in [15] implies that each DF(ui, J) is injective since every class [Ci]
has negative square. Since each DF(ui, J) is a Fredholm operator with constant rank, by
implicit function theorem ([18] Chapter 2) in the Banach setting, there exist local inverse
of ∂̄ and this endows P l a Banach chart. As l getting larger, this will endow P a sequence
of Banach charts. And when l = ∞, on each local chart, the inverse limit of the Banach
spaces will become a Fréchet space and they patch together to endow P a Fréchet manifold
structure.

Then the rest proof will follow from the index computation of projection P l → J l in the
Banach setting and then taking the inverse limit. The argument is written down in [31]
p151 Proof of Theorem 6.2.6(II) and [5] Appendix B.1. We point out here the projection
π : P → Jω is an embedded submanifold. First, it is injective by [15], then it is an immersion
by the construction of the local chart. Then we restrict π to its image and consider the
inverse π−1

imπ. Suppose there is a sequence {Jn} ⊂ imπ converging to J0 ∈ imπ, then by
Gromov compactness their preimages {Cn} ⊂ P of π also converge to C0. Note C0 is J0

holomorphic, which means each class [Ci] has an embedded J0 holomorphic representative.
Since each [Ci] ∈ S≤−1

ω , C0 must belong to P . This means π−1
imπ preserves limit and hence

it is a continuous map. Then π : P → Jω is homeomorphic onto its image, and hence
an embedding. Also, from the way that the Fréchet manifold structure is given, it is
paracompact (by the Morita theorem, Lindelöf manifolds modeled by smoothly regular spaces
are smoothly paracompact). �

Remark A.2. • As denoted by [2], since all the Fréchet manifolds we work with can
naturally be interpreted as inverse limits of Banach manifolds; and the successive
inclusions between the Banach manifolds are weak equivalences. Then the results
about Aē’s stated in the smooth setting can be interpreted as the corresponding result
for each Banach manifold indexed by each k, and then apply the weak equivalences
of the algebraic invariants between the Fréchet object and the sequence of Banach
objects.

• One can also find versions of inverse function theorems in the tame Fréchet category,
for example, Richard Hamilton [13] in the general cases, and Gerstenberger [11]
section 5 deals with Cauchy-Riemann operators between tame Fréchet spaces in our
current setting.
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Appendix B. Inflation theorems along singular curves

Theorem B.1. For a symplectic four manifold (M4, J, τ0) such that J is a τ0-compatible
almost complex structure. Assume that M admits embedded J-holomorphic curves ui :
(Σi, ji) → (M4, J), i = 1, 2 whose images are Z1, Z2 respectively. Let’s also denote their
homology classes Z1 and Z2 with Z2

i = −mi and Z1 · Z2 = 1. For all ε1 and ε2 there exist a
family of symplectic forms τµ,η all taming J and [τµ,η] = [τ0] + µP.D.[Z1] + ηP.D.[Z2] for all

0 ≤ µ τ0(Z1)
m1
− ε1 and 0 ≤ η τ0(Z2)

m2
− ε2. Here P.D.[Zi] is the Poincaré dual of Zi.

Proof. Now let’s focus on the case when D only has two components intersecting transversely,
i.e. the augmented graph being

Take N(Zi) to be a neighborhood of Zi consisting of the unit disk bundle over the curve
in class Zi. Let’s call the unit disk bundle U(Zi). Denote by ri the radial coordinate of
U(Zi). We assume τ0(Z1) = 1 and τ0(Z2) = b. Denote by σZ1 and σZ2 the area form on
Z1 and Z2 such that

∫
Z1
σZ1 = 1 and

∫
Zb
σZ2 = b. We then can choose connections on the

disk bundles such that the connection one-forms α and β on the bundles over Z1 and Z2

obey dα = m1π
∗(σZ1) and dβ = m2π

∗(σZ2) where π being the bundle projections (there’s no
confusion so we do not distinguish) respectively.

Now in a very small tubular neighborhood of Z1 ∪ Z2, by the main theorem of [33], we can
choose the symplectic form τ0 to be diffeomorphic via φ to the following:

• near Z1 and away from Z2, τ0 ∼ (1 +m1r
2
1)π∗(σZ1) + 2r1dr1 ∧ α;

• near Z2 and away from Z1, τ0 ∼ (1 +m2r
2
2)π∗(σZ2) + 2r2dr2 ∧ β;

• in the intersection neighborhood (product of two disks), τ0 ∼ 2r1dr1∧α+ 2r2dr2∧β.

Note that by doing the diffeomorphism φ we only changed the coordinates on N(Z1) and
N(Z2), we only changed the parametrization, but not the form.

Note that τ0 on the product of two disks perfectly matches the forms on the Z1 neighborhood
and the Z2 neighborhood, when restricted to Z1 and Z2.

Then for the inflation form τµη, we will do the similar modification as [7], using two functions
with the following properties(proved in [7] section 2):

• The functions fµ(r) gτ (r) will be nonincreasing positive functions of r supported in
a neighborhood r ≤ r0, constant in a smaller neighborhood near r = 0

• fµ(r) = M < 1
m
− ε.

• fµ(r) has a uniform bounded of its derivative at every order in the interval [0, r0].

We are going to change the forms in the following way:

• near Z1 and away from Z2, τµη = (1 +m1r
2
1−m1f(µ))π∗(σZ1) + [2r1− f ′µ(r1)]dr1∧α;

• near Z2 and away from Z1, τµη = (1 +m2r
2
2 −m2g(η))π∗(σZ2) + [2r2− g′η(r2)]dr2 ∧ β;
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Those are the same treatment and the same quadratic estimate will work.

Then, in the red intersection neighborhood (product of two disks), τµη = [2r1−f ′µ(r1)]r1dr1∧
α + [2r2 − g′η(r2)]r2dr2 ∧ β.

The argument basically follows from [30] Lemma 5.2.1. The first bullet grants that the
cohomology class, and the 3rd bullet grants there is a Moser interpolation between the blue
part and the red part.

We further check the positivity.

Lemma B.2. [2r1 − f ′µ(r1)] and [2r2 − g′η(r2)] are non-decreasing functions in r1, r2, and
they have bounded derivatives at every order.

Proof. Follows from properties of fµ(r) and gη(r). �

Note that we want
1) the form τµη obtained both ways on the boundary disks match each other.
2) on the Z1 and Z2, τµη scale τ0 as desired.
3) it has the correct cohomology class.
And it is easy to check the above form satisfies both conditions.

Now we are going to prove the tameness using the quadratic estimate in the neighborhood
of the product of disks S = D1 × D2, where 0 ∈ D1 ⊂ Z1, 0 ∈ D2 ⊂ Z2: We’ll use the
splitting of the tangent space Tp(S) = E1 ⊕ E2, where Ei tangents to Di.

Under this choice of splitting, let’s assume that

Jp =

[
A B
C D

]
,

where A,B,C,D are 2× 2 matrices.

Now let’s do the general computation and let

A =

[
0 −1
1 0

]
.

τµη((v, w), Jp(v, w))

= F (µ, η, r1)2r1dr1 ∧ α((v, w), Jp(v, w)) +G(µ, η, r2)2r2dr2 ∧ β((v, w), Jp(v, w))

(4) = Fv>A>Av + Fv>A>Bw +Gw>A>Cv +Gw>A>Dw.

We want to prove this is positive at least for the neighborhood where both disks have
sufficient small radius.

Note that since the curve at r1 = 0 or r2 = 0 is J-holomorphic we can assume that the fiber
disks are locally J-holomorphic near r1 = 0 or r2 = 0 and this means B = C = 0 when
r1 = 0 or r2 = 0.
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Also note that by the standardization of the neighborhood, we achieved both ω orthogonal
and J-orthogonal. Since we started with triple (N,ω, J) where N is the neighborhood with
two J-holomorphic curves intersecting at one point. Then we use a diffeomorphism supported
along N , making two curves ω′ orthogonal. This diffeomorphism also pushes forward J , and
both curves are still J ′-holomorphic. Since near the intersection point, the disk on one curve
is the base and the disk on the other curve is the fiber; we also know that they are both
J ′-holomorphic after the push forward. In the above (and below) argument, we still use J
to denote J ′.

To justify B = C = 0, we only need to show that J preserves the base and fiber. And this
is the J-holomorphic condition. And this means that the local J matrix has to be blockwise
diagonal.

Then we know that

τ0((v, w), Jp(v, w)) = v>A>Av + w>A>Dw > 0

Since

Jp =

[
A 0
0 D

]2

= −Id,

when r1 = 0 or r2 = 0, we can find a neighborhood r1, r2 < δ and a positive constants K
and L depending only on J s.t.

||v||2 ≤ Kv>A>Av, ||w||2 ≤ Kv>A>Dv,

and

v>A>Bw ≤ L||v||||w||, w>A>Cv ≤ L||v||||w||.

Then the above shows that for sufficient small neighborhood, i.e. r1, r2 < δ, equation (4) can
be made positive, because F,G as functions are uniformly bounded with value greater than
1.

�

Remark B.3. A result of Guadagni in [12] provides a neighborhood theorem for singular
curves (which allows cycles beyond chain types) to improve the singular inflation theorem.

Since the homological intersections are one, by positive intersection, we have a divisor D ⊂
M , which is normal crossing, and has no cycle in its augmented graph (Γ, a) (each component
being a node and each intersection being an edge).

Now, if we have an ω′-orthogonal divisor (D′, ω′) with augmented graph (Γ,~1), which is the
same as that of the neighborhood triple (X,ω,D), then there exist neighborhood N ′ of D′

symplectomorphic to a neighborhood of D and sending D′ to D (See [33] and [10]).
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