
SYMPLECTIC ISOTOPY ON NON-MINIMAL RULED
SURFACES

Abstract. We prove the stability of Symp(X,w) ∩ Diff0(X)
for one-point blowup of irrational ruled surfaces and study their
topological colimit. Non-trivial generators of π0[Symp(X,w) ∩
Diff0(X)] that differ from Lagrangian Dehn twists are detected.

Contents

1. Introduction 1
1.1. Statements of the problems 2
1.2. Techniques of proofs 4
2. The symplectic cone and its partition 5
3. Homotopy fibration and the stratification of Au 6
3.1. Proposed stratification of the spaces of almost complex

structures 7
3.2. Inflation as the means of transportation between the

spaces of almost complex structures 8
3.3. Keeping track of isotopy classes during the b+ = 1

J−compatible inflation. 9
3.4. A historical detour to the minimal cases 10
4. Stability of strata of Aω in the one point blowup cases 11
4.1. Our strategy 11
4.2. Inflating 12
4.3. Proof of Theorem 1.2 17
5. Singular foliations and topological colimit 17
References 22

1. Introduction

In this note, we study some topological aspects of symplectomorphis-
m groups, especially the symplectic isotopy problems of non-minimal
irrational ruled surfaces.

Date: September 1, 2020.
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1.1. Statements of the problems. To set notations, let Mg =
Σg × S2. By McDuff’s classification results [16], any symplectic form
is diffeomorphic to µσΣg ⊕ σS2 for some µ > 0, up to diffeomor-
phism and normalization. Such classification result also holds in the
blowups Mg#nCP 2 [11]: if one picks up ω on Mg#nCP 2, then after
normalization ω has areas (µ, 1, e1, · · · , en) on the homology classes
B,F,E1, · · · , En, where µ > 0, e1 + e2 < 1, 0 < ei < 1, e1 ≥ e2 ≥ · · · ≥
en, e1 < µ, choosing the standard basis B,F,E1, · · · , En and associate
coefficients (µ, 1, e1, · · · , en) to get a cohomology class, then the sym-
plectic forms in this cohomology class are isotopic. cf. [15, 12]. After
normalization, the vector u = (µ, 1, e1, · · · , en) determines all possible
symplectic form cohomology classes and belongs to a convex region
∆n+1 in Rn+1, whose boundary walls are n-dimensional convex regions
given by linear equations. We will be concerned with symplectic
deformations inside this region ∆n+1 for the n-points blowups.

In figure 1 below, we show the region corresponding to the one point
blow up.

µ→∞

B − F
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· · · · · ·

· · · · · ·

µ = 0
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Figure 1. (Normalized) Symplectic cone of one-point blowup

Note that in Figure 1, the bottom dashed line means a symplectic
minimal ruled surface which is the product Σg×S2 with ω(Σg)/ω(S2) =
µ. The top line is symplectic minimal ruled surface which is the non-
trivial bundle Σg×̃S2 with ω(Σg)/ω(S2) = µ. The interior of the cone is
a one-point blowup of the minimal ruled surface, such that ω(Σg) = U ,
ω(S2) = 1, and 0 < ω(E) = c < 1. The very left chamber has round
boundaries, which is a one-ball packing that’s close to the volume
constraint. Throughout this paper, we are going to assume µ ≥ 1,
which means we’ll never consider the chamber on the very left.

We can partition this cone ∆n+1 into countably many open-closed
chambers (see Figure 2) by linear equations in Rn+1 such that each
chamber has the same arithmetically admissible cohomology classes,
i.e. positive when evaluated on the corresponding homology classes.
See section 2 for details.
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The main concern of this paper is to address the topological sta-
bility of symplectomorphism group as the vector u = (µ, 1, e1, · · · en)
changes within the chambers. Denote Gn

u,g as the intersection of

Symp(Mg#nCP 2, ω) with Diff0(Mg#nCP 2), the identity component
of the diffeomorphism group. We will tackle the following conjecture
on the topology of Gn

u,g:

Conjecture 1.1. Let M be either Mg or one of its blowups, If two
symplectic forms on M are represented by u1 and u2 belonging to the
same chamber then πi(G

n
u1,g

) = πi(G
n
u2,g

),∀i ≥ 0.

Variations of such conjecture can be addressed. For instance, one
can prove stability for only a selective collection of these regions or
only addressing the first n levels of homotopy groups.

This conjecture for minimal models has been established by McDuff
[17] in for g = 0 and by Buse [4] for g > 0. The conjecture for the
rational blow up cases has been proved by Anjos-Li-Li-Pinsonnault in
[2].

In the current paper, we establish this conjecture for the one-point
blowup cases. The many-point blowup cases will be studied in a future
work [5].

Theorem 1.2. The Conjecture 1.1 holds for Mg#CP 2, ∀g ≥ 1,
with a symplectic form ω such that [ω] = [µ, 1, c] and µ > g, i.e.
ω(Σg) > gω(S2).

More concretely, except for the first 2g− 1 chambers in Figure 1, on
the following 2 types of chambers, stability holds.

The following Figure 2 represents the two types of stability chambers.

Figure 2. Stability chambers of one-point blowup

Once we establish the stability Theorem 1.2, this allows us to show
the following topological colimit characterization.
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Theorem 1.3. For Mg#CP 2, ∀g ≥ 1, there exists a topological colimit
G1
∞,g for the groups G1

u,g as µ→∞. Furthermore, G1
u,g has the homo-

topy type of the group D1
g, which is a diffeomorphisms group induced

from the blowup of the fiberwise diffeomorphism of Mg endowed with
the split complex structure, see section 5 and sequence 5 for details.

A sufficient understanding of D1
g from Theorem 5.7 allows us to

conclude the following:

Corollary 1.4. G1
u,g is disconnected for g > 1 and µ > g, where

u = [µ, 1, c1].

In [18] the following conjecture is proposed as open problem 14 for
minimal ruled surfaces.

Conjecture 1.5 (Symplectic isotopy conjecture for ruled surfaces).
For (Mg, ω), a symplectomorphism is symplectically isotopic to identity
if and only if it is smoothly isotopic to identity.

Our Corollary 1.4 shows that a corresponding conjecture is not true
for the one-point blowup of ruled surfaces. There exist “exotic sym-
plectomorphisms” that are smoothly but not symplectically isotopic to
identity. Notice that for topological reasons, there are no Lagrangian
spheres inside Mg#CP 2, and hence those ”exotic symplectomorphism-
s” are not generated by Dehn twists along Lagrangian spheres.

1.2. Techniques of proofs. The main difficulty in approaching the
main conjecture is the absence of direct maps between the groups of
symplectomorphism groups corresponding to two deformation equiva-
lent symplectic forms on a given manifold.

McDuff’s approach in [17] was to consider Kronheimer’s fibration in
[7]:

(1) Symp(M,ω) ∩Diff0(M)→ Diff0(M)→ Tω,
where Tω represents the space of symplectic forms in the class [ω] and

isotopic to a given form, and Diff0(M) is the identity component of the
diffeomorphism group. Moser’s technique grants a transitive action of
Diff0(M) on Tω and hence gives us the fibration 1.

Note that there is no direct map between Symp(M,ω) when deform-
ing ω. Following McDuff’s work in [17]1, one uses the (weak) homo-
topy equivalence between Tω and the space Aω (which is the space of

1 McDuff’s original results were written in terms of homotopy fibration where the
larger space of taming almost complex structures was used. Using the fact that the
space of taming almost complex structures is homotopy equivalent to the one we
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ω′-compatible almost complex structures, where ω′ is any symplectic
form isotopic to ω) to construct a homotopy fibration

(2) Symp(M,ω) ∩Diff0(M)→ Diff0(M)→ Aω.
By the inflation technique in section 4 one can relate (by direct

inclusions of strata) the spaces Aω’s for ω in different cohomology
classes and hence prove stability results of Symp(M,ω). Thus at the
heart of the matter remains establishing such strata and inclusions in
the given setting. That involves:

(a) establishing the existence of sufficient inflation techniques
(b) existence of sufficient J holomorphic embedded (or nodal) curves

for nongeneric almost complex structures so that the inflation can be
performed.

Most techniques we are using here are concerning the study of s-
paces of almost complex structures (not necessarily generic ones) and
J-holomorphic curve they admit.
Acknowledgements. We are grateful to Richard Hind, T-J Li, Dusa
McDuff, Weiwei Wu, Weiyi Zhang for helpful conversations.

2. The symplectic cone and its partition

By [12], if M is a closed, oriented 4-manifold with b+ = 1, the
symplectic canonical class is unique once we fix u = [ω], and we denote
it by Ku.

Let E be the set of exceptional sphere classes, and CM denote the
symplectic cone.

In Theorem 4 of [12], Li-Liu showed that if M is a closed, oriented
4-manifold with b+ = 1 and if the symplectic cone CM is nonempty,
then

CM = {e ∈ P |0 < |e · E| for all E ∈ E}.
Note that the way we partition the normalized symplectic cone is by

looking at the homology classes of potential symplectic curves. To that
end, we will now fix some notation:

Definition 2.1. Let Sω denote the set of homology classes of embedded
ω-symplectic curves and Kω the symplectic canonical class. For any
A ∈ Sω, by the adjunction formula,

(3) Kω · A = −A · A− 2 + 2g(A).

For each A ∈ Sω we associate the integer

codA = 2(−A · A− 1 + g).

use of compatible structures, for reasons explained in Section 3.4 we will use the
compatible structure spaces
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We can define Su, where u = [ω] accordingly, only using the coho-
mology data of ω. We are going to denote S<0

u by the subset of Su
having negative self-intersections.

Remark 2.2. • By Lemma 2.4 in [2], Su = Sw.
• By the main theorem in [13], the negative self-intersection class-

es that admit embedded representatives are exactly those that
have positive pairings with the class ω. Namely, we can find
some integral class u′ that admits some embedded curve in those
classes of S<0

u , and the symplectic inflation of [13] allows us to
change the class u′ into u.

Note that the way we do partition for rules surfaces is by looking
at the inequality u · A ≤ 0, where A ∈ S<0

u and Cod(A) > 0. In
particular, by wall, we refer to those subsets {u|u · A = 0, A ∈ S<0

u of
the symplectic cone.

Hence when M = Mg#CP 2, Figure 1 represents CM , when normal-
izing ω(F ) to be 1.

Explicitly, the chambers we obtain in the one-point blow-up cases
are given by the following inequalities:

• The 2k + 1-th region is given my u · [B − kF − E] > 0,
u · [B − (k + 1)F ] ≤ 0.

• The 2k-th region is given by: u · [B − kF ] > 0,
u · [B − kF − E] ≤ 0.

• Top: u · E < 1; Bottom: u · E > 0.

3. Homotopy fibration and the stratification of Au
The homotopy fibration (2) presented in the introduction has been

fruitfully applied to study the topology of Gω, especially in dimension
4, cf. [17], [4], [1] etc. Now let’s focus on the case of non-minimal ruled
surfaces. Following the same strategies employed by [8], one needs
to find a sufficiently fine stratification of the spaces of almost complex
structures and show that they only differ by the addition of such (finite
codimension) strata when ω is crossing the walls of the chambers of the
arithmetic regions in ∆n+1.
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Note that in the non-minimal case, cohomologous forms are not
known to be isotopic, in contrast to the minimal case. We’ll consider a
larger space Au, which is the space of almost complex structures that
are compatible with some ω s.t. [ω] = u. A discussion on this topic
will be included in section 3.3.

3.1. Proposed stratification of the spaces of almost complex
structures. First we define the prime subset of the space of almost
complex structures Au,C labeled by set C ⊂ S<0

u for a given isotopy
class of ω as following:

Definition 3.1. A subset C ⊂ S<0
u is called admissible if

C = {A1, · · · , Ai, · · · , Aq| Ai · Aj ≥ 0, ∀i 6= j}.
Given an admissible subset C, we define the real codimension of the
label set C as

cod(C) =
∑
Ai∈C

codAi
=
∑
Ai∈C

2(−Ai · Ai − 1 + gi).

Define the prime subset

Au,C := {J ∈ Au|A ∈ S<0
u has an embedded J-hol representative if and only if A ∈ C}.

And if C = {A} contains only one class A, we will use AA for A{A}.

Notice that these prime subsets are disjoint and we have the decom-
position Au = qCAu,C.

We define a filtration according to the codimension of these prime
subsets:

· · · ⊂ Xu,2n+1 ⊂ Xu,2n(= Xu,2n−1) ⊂ Xu,2n−2 . . . ⊂ Xu,2(= Xu,1) ⊂ Xu,0 = Au,
where Xu,j := qcod(C)≤jAu,C is the union of all prime subsets having

codimension no less than j.
We define the open strata to be the complement of positive codimen-

sion strata in Au. Namely, we denote Au,open as Xu,0 −Xu,2.

Remark 3.2. Note that we don’t have control of what type of classes
are J-holomorphic embedded in Au,open. For different J ∈ Au,open, there
could be different embedded curves in the section classes B,B+F,B+
2F, · · · ; see proof of Lemma 4.3 for details.

For S<0
u , the following shows that the prime subsets are well behaved

analytically.

Proposition 3.3. Let (X,ω) be a symplectic 4-manifold. Suppose
UC ⊂ Aω is a subset characterized by the existence of a configura-
tion of embedded J-holomorphic curves C1 ∪ C2 ∪ · · · ∪ CN of positive
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codimension as in Definition 2.1 with {[C1], [C2], · · · , [CN ]} = C. Then
UC is a co-oriented Fréchet suborbifold of Aω of (real) codimension
2N − 2c1([C1] + · · ·+ [CN ]) =

∑
iK · [Ci]− [Ci]

2.
In particular, this statement covers the case where (X,ω) is a ruled

surface and C ′is all have negative squares.

Proof. Firstly, it suffices to show the above result in the Banach setting.
In particular, Theorem 2.1.2 in [6] showed that the space of the nodal
curve in those fixed classes is a finite co-dimensional Banach analytic
subset. Then use the argument in Appendix B of [1], one can construct
a local chart with codimension 2N − 2c1([C1] + · · · + [CN ]) of Au at
each point of the space of J so that there is an embedded curve in each
component.

The orbifold structure comes from Teichmller space to the moduli
space of Riemann surfaces of genus g. Hence the chart is quotient by
at most a finite group. Note that this follows Lemma 2.6 in [17]. �

Corollary 3.4. The prime subsets Aω,C are suborbifolds of Aω codi-
mension of Cod(Aω,C).

Proof. Aω,C is a subset of UC, and the complement of Aω,C in UC is a
union of UCi , where Ci’s are admissible sets containing C. Hence Aω,C
is a suborbifolds of the same codimension as UC in Aω. �

3.2. Inflation as the means of transportation between the s-
paces of almost complex structures. McDuff [17] and Buse [4]
used version of symplectic inflation keeping track of an almost com-
plex structure J to study the structure of the spaces of almost complex
structures. As discussed in [2] Section 4.4, their proofs made the unwar-
ranted assumption that for every ω-tame J and every J-holomorphic
curve C one can find a family of normal planes that is both J invariant
and ω-orthogonal to TC. This is true only if ω is compatible with J
at every point of C. A correct version of their statements, which works
with the proof provided in [17] for positive self intersection curves and
in Theorem 1.1 in [4] for negative self-intersection curves, combines as:

Theorem 3.5. For a 4-manifold M , given a compatible pair (J, ω),
one can inflate along a J-holomorphic curve Z, so that there exist a
symplectic form ω′ taming J such that [ω′] = [ω] + tPD(Z), t ∈ [0, µ)

where µ =∞ if Z · Z ≥ 0 and µ = ω(Z)
(−Z·Z)

if Z · Z < 0.

As further explained in [2], for four-dimensional manifolds M with
b+ = 1, (such as the blow-up ruled surfaces) the strategy is to perform
the above inflation to obtain a J-tame ω′ in the correct cohomology
class. Then the result of Li and Zhang [14] giving the comparison of
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tame/compatible cones, one has an ω′ compatible with the given J .
Anjos et all call this b+ = 1 J−compatible inflation.

3.3. Keeping track of isotopy classes during the b+ = 1
J−compatible inflation. As previously mentioned, cohomologous
forms are not known to be isotopic in the cases of blow-ups, in contrast
to the minimal case.
When inflating compatible with J in the larger space Au of almost
complex structures compatible with some symplectic form in the
cohomology class u, we must exhibit the following properties:
•All the connected components of both Au and Tu are homo-

topic to each other and there is a canonical bijection between
the two sets of components. By the argument in Lemma 4.1 in [2],
Aω is a path connected component of Au and is canonically homotopy
equivalent to Tω.

In fact, Tω and Aω correspond to each other under the canonical
bijection between the sets of path connected components of Tu and Au
in Lemma 4.1 in [2].
• Performing inflations from one cohomology class to anoth-

er preserves the isotopy components of the spaces Au and Tu.
Let J ∈ Aω such that [ω] = u. Suppose that we perform the b+ = 1
J−compatible inflation in Section 3.2 to ω to first get a symplectic
form ω′ taming J . Then by the cone results of Li-Zhang in [14], one
can concludes that J is in fact compatible with some symplectic form
ω′′ in the same cohomology class u′ of ω′.

Claim 3.6. i) For another J̃ ∈ Aω, after performing the two steps in
the b+ = 1 J̃−compatible inflation we obtain a symplectic form ω̃′′ in
the same isotopy component of Tu′ as ω′′.

ii) If we perform the opposite direction two step b+ = 1 inflation for
any other J ′′ ∈ Aω′′ then we obtain an ω′′′ ∈ Tω.

From this Claim, we conclude that the inflation process does not
change connected components.

Proof. First, let’s choose the connected component explicitly. The
proof for the Claim i) and ii) for any other components follow from
the first bullet in this section.

Let Jsplit be the product complex structure on Σg × S2. Let Jstd be
the blowup of Jsplit, at a point p of a fixed fiber which is not
the intersection point on the base.
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As we’ll see blow, for any cohomology class u, there is a preferred
connected component ( denoted Aω) of Au to be the one that contains
the Jstd, and choose all other Aω′ or Tω′ accordingly.

Namely, for any u, there exist an isotopy class ω̄ in u so that Jstd is
compatible with some form in the isotopy class, namely, J ∈ Aω̄. The
reason is we can always start from a Kähler ruled surface and inflate
along the embedded fiber class curve to achieve any cohomology class
in figure 2. Hence the standard Jstd tames some form in every class.
Then the comparison of the tame and compatible cone by Li-Zhang
affirms that Jstd is compatible with some form in every class. Notice
that this gives the canonical choice of the connected component of Au
for any u. And this proves fact 1.

Then we prove Claim ii), we use the canonical choice of components
given by Jstd:

Recall that both Jstd and J ′′ blongs to the same path connected
component Aω′′ .

We then define the product space Pω′′ = {(ω, J)|Tu × Aω′′ :
ω is compatible with J, [ω] = u}. Consider the projection from Pω′′ to
Aω′′ .

Notice that the projection onto the J factor and ω factor both have
convex and hence contractible fibers, by [18] section 3.5. And the
space Aω′′ is connected. Then the product space Pw′′ is also path con-
nected. Hence we know that the form ω′′′ described in the statement of
Claim ii) lives in the same path-connected component as the original ω.

�

Now we always have a well defined connected component Tu′ and
the corresponding space Au′ , which is the space of J compatible with
some form in Tu′ that contains Jstd. For ω′ we have Tω′ , Aω′ and the
homotopy fibration Gω′ → Diff0(M)→ Aω′ .

Similarly, we are going to use the following diagram in the proof of
1.2

(4)

Gω −−−→ Diff0(M) −−−→ Aωy y y
Gω′ −−−→ Diff0(M) −−−→ Aω′ .

3.4. A historical detour to the minimal cases. We find it infor-
mative to explain the proof strategy from McDuff [17] and Buse [4]
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in the minimal cases, to show how we can evolve our strategy in the
non-minimal cases.

When the symplectic manifold is a minimal ruled surface the sym-
plectic cone is given by a line and the finite codimension strata are
given by curves in classes B−kF ; thus they are labeled Akg,µ and Aopeng,µ

respectively. McDuff showed that for each J there is a foliation of Mg

with leaves embedded J holomorphic curves F and used this to show
that right inclusion Ag,µ ⊂ Ag,µ+ε for all µ, ε > 0, g > 0 or for all
µ > 1, ε > 0, g = 0.

In her work, this right inclusion is done regardless of strata; however,
left inclusions ought to be proved stratum by stratum (including the
open stratum) using inflation methods along embedded curves with
positive self-intersections.

More specifically, she used curves in base class B (with a notable
restriction on µ > g for the higher genus cases) to prove the left
inclusion Aopeng,µ ⊃ A

open
g,µ+ε.

The existence of sufficient embedded positive curves in the strata
Akg,µ proved difficult in McDuff’s work in the cases g > 0, although
possible in the rational cases; later, Buse developed the inflation tech-
nique along negative curves to complete the left inclusions for the strata
with finite codimension and complete the inclusions Akµ ⊃ Akµ+ε for all
k > 1.

As a byproduct of these techniques and the homotopy fibration (2)
they verified the Conjecture 1.1 holds for the following cases.

Theorem 3.7. • McDuff [17] when g = 0, the homotopy type of
the groups G0

µ is unchanged on all intervals (n, n+ 1], n for any
nonzero natural number n.
• Buse [4] when g > 0, the homotopy type of the groups Gg

µ is
unchanged on all intervals (n, n + 1] for any nonzero natural
number n ≥ bg/2c.

Moreover, this stability results allowed McDuff to show that a ho-
motopy colimit G∞,g exists and she shows that this group is homotopy
equivalent to a smooth model group, namely the group D0

g of smooth
fiberwise diffeomorphisms of Mg. Among the topological consequences
of this result we note that D0

g ,G∞,g and consequently Gg,µ are connect-
ed.

4. Stability of strata of Aω in the one point blowup
cases

4.1. Our strategy. For the treatment of nonminimal cases involving
a multiple blow up, one approaches a similar strategy. However, the
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structure of the chambers is more complicated and one has to deal with
several additional problems.
Notation convention: whenever unnecessary, we are going to omit
the genus subscript in our spaces and n (the blowup number, which
always equals 1 here), for example, we’ll write Aω instead of Ang,ω.

Firstly, we use a singular foliation result of Zhang [Zhang16] to pro-
ceed with the right inflation of the total(unstratified) spaces of com-
patible almost complex structures. Then one has to produce additional
curves to deal with inflation within the chambers. Also, notably, a sim-
ilar restriction on the symplectic class with regards to the g appears
(due to constraints arising from Gromov invariants computations) when
dealing with leftwards inflation on the open stratum. The general cases
for several points blow-ups will be treated in future work [5];

The present paper will only treat the one point blow up cases for
any g > 0; in this instance, the necessary foliation result of Zhang
[Zhang16] (see also Shevshishin-Simirov [SS17elliptic]) translates in-
to the following:

Lemma 4.1. Let (Z, ω) be a symplectic irrational ruled 4-manifold

diffeomorphic to S2×Σg#CP 2
, and let J be an ω-compatible almost-

complex structure. Then Z admits a singular foliation given by a
proper projection π : Z → Y where Y is a smooth compact surface of
genus g such that

i) there is a singular value y∗ ∈ Y such that π is a foliation over the
leaf space Y − y∗, with the fiber π−1(y), y ∈ Y − y∗, represented by an
embedded J-holomorphic rational curve in the class F ;

ii) the fiber π−1(y∗) consists of the two exceptional J-holomorphic
smooth rational curves in the classes F − E and E.

This will be used with both the right inflation as well as the chamber
positioning which in these cases involves increasing or decreasing the
blow-up sizes (vertical inflations). Our Proposition 4.2 and the table 1
in section 4 explain the strategy.

We are also able to show the existence of a homotopy colimit and
provide a smooth diffeomorphism model in Section 5. However the
topology of this group is more difficult to study so we content ourselves
to show that, in contrast to the minimal case, both this smooth model
and consequently the symplectomorphism groups are not connected.

4.2. Inflating. Throughout this section, We are going to denote the
following Au or Au,C by the canonical component.

This section is concerned with proving the required stability (invari-
ance) of strata in the spaces of almost complex structures Aω when we
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consider the one point blow-ups for all g > 0. The table reflects our
strategy of proof in Theorem 1.2.

The general idea is that moving right (toward infinity) is always
easy, but moving left is harder. And we start with a point on the left,
name a target in a chamber and do large scale or small scale moves to
hit the target.

Proposition 4.2. In the following cases, the strata have inclusion
relations:

(1) Au1,C = Au2,C, if u1 = [µ, 1, c1], u2 = [µ, 1, c2], ∀C ⊂ S<0.
(1’) For the open stratum, Au1,open = Au2,open, if u1 = [µ, 1, c1], u2 =

[µ, 1, c2], and µ > g.
(2) For any stratum, including the open stratum, Au,C ⊂ Au′,C, if

u = [µ, 1, c], u′ = [µ+ ε, 1, c], ∀C ⊂ S<0 and for all µ > 1, ε > 0.
(3) Au,open ⊃ Au′,open, where u = [µ, 1, c], u′ = [µ + ε, 1, c], and for

all µ > g, ε > 0.
(4) Au,C ⊃ Au′,C, u = [µ, 1, c], u′ = [µ + ε, 1, c], ∀∅ 6= C ⊂ S<0 and

for all µ > 1, ε > 0.

In conclusion, any two forms in the same chamber has the same
strata in every level, the strata of Au and Au′ that are labeled by the
same curve are the same, if µ > g.

Proof. (2) is Lemma 4.5, (3) is Lemma 4.6 (4) is Lemma 4.7.
(1) and (1’) follows from Lemma 4.4. �

To prove Proposition 4.2, we first need to show the existence of
embedded J holomorphic curves. The following proposition establishes
all the curve existence results(some results here repeat Zhang’s foliation
result)

Proposition 4.3. Compendium of J-holomorphic curves on S2×Σg#CP 2
.

(1) For any J ∈ Au, there are embedded J-holomorphic curves in
the classes F , F − E and E by [Zhang16].

(2) For any J in a positive co-dimensional stratum Au,C, where C
is either B−kF or B−kF−E, C is represented by an embedded
J-holomorphic curve by the definition of the stratum.

(3) For Au,open, there is an embedded J-holomorphic curve in some
B + xF , where x ≤ g.

Proof. (1) Theorem 1.6 in [Zhang16] gives the singular foliation
where the smooth leaves gives the embedded F , and the singular
leaf gives the embedded F − E.

(2) It follows by definition.
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Direction Strata Class to inflate Proof Size/Note

↑ or ↓ Au,C E, F − E ,F Lemma 4.4 Foliation and exception-
al curve

↑ or ↓ Au,open B + xF ,F − E Lemma 4.4 Foliation and exception-
al curve

−→ Any strata F Lemma 4.5 Foliation allows any size

←− Au,open B + xF, x ≤ g Lemma 4.6
left to the chamber a-
long B+xF , then Lem-
ma 4.4

←− AB−kF−E B − kF − E Lemma 4.7
1st bullet

left to the chamber a-
long B − kF − E, then
Lemma 4.4

←− AB−kF B − kF Lemma 4.7
2nd bullet

left to the chamber a-
long B − kF , Lemma
4.4.

Table 1. Inflation process

(3) It was proved by Li-Liu [12] that, if M = Σg×S2 or its blowup,
where g > 0 and C = pB + qF , then

Gr(C) = (p+ 1)g, provided that k(C) ≥ 0.

Here k(C) means the virtual dimension of the moduli space
of curves in class C.

In particular, Gr(C) 6= 0 provided that q ≥ g − 1. When
g = 0, Gr(C) = 1 for all classes C with p, q ≥ 0 and p+ q > 0.

In general, for the genus g cases we always have Gr(B+gF ) =
2g > 0, and expect to have k(B + gF ) = 1

2
([2B − 2F − · · · ] ·

[B + gF ] + [B + gF ]2) = 2g + 2− 2g ≥ 0.
Now we have a stable curve in the class B + gF for any

J . Since J ∈ Au,open, there are no curves with negative self-
intersection, meaning that for all curves, both B and F have
non-negative coefficients. Now, looking at the stable represen-
tative, we know there is exactly one component where B has
coefficient 1, due to the non-negativeness of B-coefficient. And
that component has to be B + xF for some x ≤ g, due to the
non-negativeness of F -coefficient.

�

Lemma 4.4. Au1,C = Au2,C, if u1 = [µ, 1, c1], u2 = [µ, 1, c2], ∀C ⊂
S<0. Moreover, for the open stratum, Au1,open = Au2,open, if u1 =
[µ, 1, c1], u2 = [µ, 1, c2], and µ > g.

Proof. Let’s assume c2 > c1.
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We’ll prove Au1,C ⊂ Au2,C, and Au1,C ⊃ Au2,C (including the open
strata).
Au1,C ⊃ Au2,C is always easy since we always have an embedded E,

which we can inflate along.
Now for Au1,C ⊂ Au2,C, Proposition 4.3 grants the following curves

that we can inflate along:

(1) For the open stratum: We inflate along B+xF and F −E, and
we want

[ωt1,t2 ] = [µ, 1, c1] + t1[x, 1, 0] + t2[1, 0, 1] = [µ+ t1 + t2x, 1 + t2, c1 + t2],

such that µ+ t1 + t2x = µ(1 + t2) and c1 + t2 = c2(1 + t2).
Solve this system of two linear equations, we have t1 = (µ−

x)t2, and (1 − c2)t2 = c2 − c1. Hence we have a solution such
that both t1 and t2 are positive.

(2) For AB−kF : We inflate along B − kF and F −E, and we want

[ωt1,t2 ] = [µ, 1, c1]+ t1[−k, 1, 0]+ t2[1, 0, 1] = [µ+ t1−kt2, 1+ t2, c1 + t2],

such that µ+ t1 +kt2 = µ(1+ t2) and c1 + t1 + t2 = c2(1+ t2).
Solve this system of two linear equations, we have t1 = (µ+

k)t2, and +(1− c2)t2 = c2 − c1. Hence we have a solution such
that both t1 and t2 are positive.

(3) For AB−kF−E : We inflate along B − kF − E and F − E, and
we want

[ωt1,t2 ] = [µ, 1, c1]+t1[−k, 1, 1]+t2[1, 0, 1] = [µ+t1−kt2, 1+t2, c1+t1+t2],

such that µ+ t1 +kt2 = µ(1+ t2) and c1 + t1 + t2 = c2(1+ t2).
Solve this system of two linear equations, we have t1 = (µ+

k)t2, and t1 + (1 − c2)t2 = c2 − c1. Hence we have a solution
such that both t1 and t2 are positive.

�

Lemma 4.5. For any stratum, including the open strata, Au,C ⊂ Au′,C,
u = [µ, 1, c], u′ = [µ+ ε, 1, c], and for all µ > 1, ε > 0.

Proof. By [Zhang16] Theorem 1.6, we known that for each J ∈ Au,C,
through each point of M there is a stable J-holomorphic spheres rep-
resenting the fiber class F = [pt× S2].

Then we can inflate along the embedded curve F . And let’s start
with u = [µ, 1, c].

By inflating, we obtain a form in tP.D[F ] + [µ, 1, c]= [µ + t, 1, c],
∀t ∈ [0,∞).

Hence the proof.
�
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Lemma 4.6. For Au,open ⊃ Au′,open, where u = [µ, 1, c], u′ = [µ+ε, 1, c],
and for all µ > g, ε > 0.

Proof. By the proposition 4.3, we have an embedded curve in the class
B + xF for some x ≤ g.

Then we can inflate along it. And let’s start with u = [µ, 1, c].
By inflating, we obtain a form in tP.D[B+xF ]+[µ, 1, c]= t[x, 1, 0]+

[µ+ t, 1, c], which normalized to(
tx+ µ

1 + t
, 1,

c

1 + t

)
,

∀t ∈ [0,∞).

Note that lim
t→∞

tx+ µ

1 + t
= x ≤ g, which covers all the µ > g. �

Lemma 4.7. Au,C ⊃ Au′,C, u = [µ, 1, c], u′ = [µ+ε, 1, c], ∀∅ 6= C ⊂ S<0

and for all µ > 1, ε > 0.

Proof. Now let’s deal with the inflation when the area of the base is
getting smaller.

• Pick a J ∈ AB−kF−E, we want the inflation process to reach as
far left as the chamber labeled in 1 by the curve B − kF − E,
then we inflate along this curve as follows.

Let’s assume that we start with [ω] = [µ, 1, c1] and we want
a J-tame ω′ ∈ [ω′] = [µ′, 1, c′1] where 1 < µ′ < µ. Then we
inflate along B − kF − E and there is a family ωt, s.t.[ωt] =
[µ+ t, 1 + t, c1 + t]. And we want µ+t

1+t
= µ′, and this means that

t = µ−µ′
µ′−1

.

Note that the range of t is given by
µ+ t−k(1 + t)− (c1 + t) > 0, i.e. µ− c1 > kt or 0 ≤ t < µ−c1

k
• Pick a J ∈ AB−kF , we want the inflation process to reach as far

left as the chamber labeled in 1 by the curve B − kF , then we
inflate along this curve as follows.

Let’s assume that we start with [ω] = [µ, 1, c1] and we want a
J-tame ω′ ∈ [ω′] = [µ′, 1, c′1] where 1 < µ′ < µ. Then we inflate
along B−kF and there is a family ωt, s.t.[ωt] = [µ+ t, 1 + t, c1].

And we want µ+t
1+t

= µ′, and this means that t = µ−µ′
µ′−1

.

Note that the range of t is given by
µ+t−k(1+t)−(c1) > 0, i.e. µ−c1 > (k−1)t or 0 ≤ t < µ−c1

k−1
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Note that after inflation in either of the bullets above, we move slant
left as far as we desire. And if we reach some point in the chamber
as in Figure 1, then to reach any point in the same chamber, we use
Lemma 4.4. This grants that we can reach any point horizontally as
we claimed in the Lemma.

�

In conclusion, assuming µ, µ′ > g, the overlapping strata of Au and
Au′ are the same.

4.3. Proof of Theorem 1.2. The Proposition 4.8 following McDuff
Corollary 2.3 in [17] allows us to show the stability of the symplecto-
morphism group:

Proposition 4.8. For any u = [µ, 1, c1], u′ = [µ + ε, 1, c2], and u′′ =
[µ+ε+ε′, 1, c2], µ > g, ε, ε > 0 there are maps Au → Au′ and Gu → Gu′

that are well defined up to homotopy and make the following diagrams
homotopy commute:

(a) Gu → Diff0(Mg#CP 2) → Au
↓ ↓= ↓
Gu′ → Diff0(Mg#CP 2) → Au′ ,

(b) Gu → Gu′

↘ ↓
Gu′′ .

Proof. The maps Au → Au′ are the inclusions Au ⊂ Au′ . Since Gu

is the fiber of the map Diff0(Mg#CP 2) → Au, there are induced
maps Gu → Gu′ making diagram (a) homotopy commute. The rest
is obvious.

�

The main Theorem 1.2 immediately follows from Proposition 4.2
along with the above Proposition 4.8.

5. Singular foliations and topological colimit

The stability Theorem 1.2 grants us that the homotopy colimit G1
∞,g

(for each horizontal line fixing the blowup size) exists.
We are going to use the relationship between the space of singular

foliations and the space of almost complex structures to establish a
smooth diffeomorphism model for G1

∞,g. We will show that this smooth

diffeomorphism model is disconnected and hence conclude that G1
∞,g is

disconnected.
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Proposition 4.8 shows that the homotopy colimit exists.
Now we prepare and give the proof of Theorem 5.7.
Since Au is an open subset of Au′ where u′ = [µ′, 1, c], s.t. µ′ =

µ + ε for all ε > 0, the homotopy colimit limµAu of the spaces Au is
homotopy equivalent to the union A∞ = ∪µAu.

Recall Jsplit be the product complex structure on Σg × S2. Let Jstd
be the blowup of Jsplit, at a point p of a fixed fiber which is not
the intersection point on the base.

Lemma 5.1. There is a map Diff0(Mg#CP 2)→ A∞ which induces a
homotopy fibration, having G1

g,∞ as the homotopy fiber.

Proof. Because Jstd is compatible with some ω ∈ Tu the map
Diff0(Mg#CP 2)→ Tµ lifts to

Diff0(Mg#CP 2)→ (Tu,Au) : φ 7→ (φ∗(ωµ), φ∗(Jstd)).

Composing with the projection to Au we get a map

Diff0(Mg#CP 2)→ Au : φ 7→ φ∗(Jstd)

that is not a fibration but has homotopy fiber Gu.
Then by Proposition 4.8 (b), we are able to construct an action

Diff0(Mg#CP 2) → A∞ which is compatible with all such actions

Diff0(Mg#CP 2)→ Au.
�

To understand A∞, let us first introduce a space Fol of singular
foliations of Σg×S2#CP 2 as in Definition 5.2. In particular, this space
only contains the foliation with one nodal fiber defined as follows:

Definition 5.2. A singular foliation by S2 of Σg×S2#CP 2 is defined
as a foliation with smooth embedded spherical leaves in the F = [pt ×
S2] class and one nodal leaf with two embedded spherical components,
each in the class E and F − E respectively. Also, we require that the
complement of the singular leaf is a smooth foliation over Y which is
a compact curve of genus g except on a single point.

Remark 5.3. [Zhang16]’s Lemma provides that for each J there is a
singular foliation with J-hol leaves.

Let Fstd be the standard blow up foliation by Jstd-holomorphic leaves.
Note that if we blowdown the complex structure, we obtain the split
complex structure on Σg × S2, and the induced foliation is the split
foliation by the spheres.

Lemma 5.4. Let Fol0 be the connected component of Fol that contains
Fstd. A∞ is weakly homotopic to Fol0.
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Proof. Observe that there is a map A∞ → Fol0 given by taking J to
the singular foliation of Mg#CP 2 by J-spheres in class F or F − E.
Standard arguments in [18] Ch 2.5 show that this map is a fibration
with contractible fibers. Hence it is a homotopy equivalence.

�

Lemma 5.5. There is a transitive action of Diff0(Mg#CP 2) on Fol0.

Proof. Since S2 \pt is compact and simply connected, each generic leaf
of this foliation has trivial holonomy and hence has a neighborhood
that is diffeomorphic to the product D2×S2 equipped with the trivial
foliation with leaves pt× S2.

Since our foliation has smoothly embedded leaves and only one nodal
leaf, we can find a 2-form transverse to each leaf. And the Poincaré dual
of such 2-form is a smooth section, not passing through the singular
point p.

Now let’s take an arbitrary singular foliation F ′ ∈ Fol0 and denote
the smooth section by Σ

′
. We’ll prove that Diff0(Mg#CP 2) takes this

foliation (F ′
,Σ

′
) to Fstd,Σstd where Σstd is the smooth section (which

is indeed Jstd-holomorphic).
Since F ′ and Fstd are in the same path connected component, there

is a φ ∈ Diff0(Mg#CP 2) sending Σ
′

to Σstd, such that the singular leaf
of F ′

goes to the singular leaf of Fstd while the two singular points are
identified. Now let’s fix a finite covering {Di, 1 ≤ i ≤ n} of Σ

′
, such

that the local foliations over Di’s cover the manifold Σg × S2#CP 2.
Then we use partition of unity for the covering {Di, 1 ≤ i ≤ n} of

Σ
′
, and for each local foliation, we apply a φi such that the foliation
F ′

under φ ◦ φ1 ◦ · · · ◦ φn agrees with the foliation Fstd.
Now we have the transitive action of Diff0(Mg#CP 2) on Fol0. Notice

that this action of Diff0(Mg#CP 2) does not necessarily preserve the
leaf. �

Hence there is a fibration sequence

(5) D ∩Diff0(Mg#CP 2)→ Diff0(Mg#CP 2)→ Fol0,

where D is the diffeomorphism preserving the leaves in the foliation
Fstd. We denote this fiber group by D1

g .



20 SYMPLECTIC ISOTOPY ON RULED SURFACES

Definition 5.6. D1
g is the elements in the identity component of the

diffeomorphisms which fit into the commutative diagram

Mg#CP 2 φ→ Mg#CP 2

↓ ↓
(Mg, p, Fp)

φ′→ (Mg, p, Fp)
↓ ↓

(Σg, pt)
φ′′→ (Σg, pt).

Here p is the intersection point E ∩ (F − E) of the singular fiber.
And the first level of the downward arrow means that we contract the
E component. We abuse notation here to still denote p for the point
in Mg after contracting the curve E.

On the second level, φ′ is a diffeomorphism of Mg keeping the point
p fixed and fixing the fiber Fp passing through p fixed as a set, and
preserves other leaves in the standard foliation.

The base Σg is the holomorphic curveBstd w.r.t the standard complex
structure, and the map downward is obtained by firstly blow down the
exceptional sphere and then projects down to the base curve.

Proposition 5.7. (1) D1
g is weakly homotopic to G1

∞,g.

(2) The group D1
g is disconnected when g ≥ 2.

(3) When µ→∞, s.t. πi(G
1
u,g) = πi(G

1
∞,g) for i ≤ min{Cod(u)}−

1, and hence the groups G1
u,g are disconnected for g ≥ 2.

Proof. For statement (1), note the equation (5) fits into the commuta-
tive diagram:

Diff0(Mg#CP 2) → A∞
↓ ↓

Diff0(Mg#CP 2) → Fol0,

where the map Diff0(Mg#CP 2)→ A∞ is given as above by the action
φ 7→ φ∗(Jstd). Hence there is an induced homotopy equivalence from
the homotopy fiber G1

∞,g of the top row to the fiber D1
g of the second.

Now we prove statement (2), first note that we have the following
Birman exact sequence (cf. [3]) when (g, n), g > 0, n > 0 is not (1, 1):

1 −→ π1(Σg,n−1) −→ Γ(g, n) −→ Γ(g, n− 1) −→ 1.

Here Γ(g, n) means the mapping class group of Σg fixing n points.
In our case, we are looking at the case n = 1

1 −→ π1(Σg) −→ Γ(g, pt) −→ Γ(g) −→ 1.

We first up each point along a loop (t ∈ [0, 2π]) which is homo-
logically non-trivial on the Σg. This give rise to a loop of complex
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structures Jt, where J0 = Jstd. Note that we can use a path φt in
Diff0(Mg#CP 2) to push J0, such that φt ◦ J0 = Jt. Note that this Jt
family gives rise to a loop of foliations, which pushing the marked point
p along a homological non-trivial circle on the standard base Σg for time
t ∈ [0, 2π], and denote this loop of foliation ft, t ∈ [0, 2π]. Note that φt
in Diff0(Mg#CP 2) pushes the standard foliation along this loop. We
now show that this loop gives rise to an element that is not isotopic to
id in D1

g . Suppose not, by path lifting of the fibration 5, we would have

a leaf-preserving element in Diff0(Mg#CP 2), so that it is isotopic to
identity through a path in D1

g . Furthermore, this path pushes the given
foliation along the lifting of the loop ft, t ∈ [0, 2π]. Now apply diagram
in definition 5.6, we would have an isotopy, this would give an isotopy
of (Σg, p), connecting the time 2π diffeomorphism to identity. This is
an contradiction against the Birman exact sequence. Hence statement
(2) holds.

Statement (3) follows from the stability Theorem 1.2.
�

Remark 5.8. When g = 0, one can blow up S2 × S2 at k points with
equal sizes. It is shown in [10] that when k ≤ 3, Gk

u,0 is connected for

all ω. When k > 3, π0G
k
u,0 is a braid group of k strands on spheres

(cf. [9]). This follows the same pattern as Diff(S2, k), which is the
diffeomorphism group of S2 fixing k points. In particular, when we
take the one point blowup of S2 × S2, all arguments in the current
paper apply here. Even though we have a model for the colimit group,
we are not able to show it’s connected, but the loop that appears in
our proof of Proposition 5.7 (2) must give rise a trivial mapping class
since Diff(S2, 1) is connected.

Remark 5.9. It remains an open question whether the colimit group
for g = 1 is connected or not. Shevchishin-Smirnov showed in
[SS17elliptic] that there exists a symplectomorphism called elliptic
twist along a (-1) torus on the minimal ruled surface or its one point
blowup. They further showed that when µ → ∞ the elliptic twist is
isotopic to identity, and a non-trivial mapping class appears in the
first chamber in our Figure 2. The two potential non-trivial sym-
plectic mapping classes, elliptic twists as in [SS17elliptic] and the
loop in Proposition 5.7 (2), fail to appear in the colimit group. In
[SS17elliptic] this is because the (-1) tori has a positive area. In our
case, this is because adding one puncture to a torus does not change
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its mapping class group. Hence we still don’t know the connectedness
of the group D1

1, and we conjecture that it is connected.

Remark 5.10. Implicit in the above argument is the following de-
scription of the map G1

∞,g → D1
g . Let Jµ denote the space of all almost

complex structures compatible with ωµ. Since the image of the group

Gu under the map Diff0(Mg#CP 2)→ Au is contained in Jµ there is a
commutative diagram

D1
g

↓
Gu

ι−→ Diff0(Mg#CP 2)
↓ ↓
Jµ −→ Fol.

Because Jµ is contractible, the inclusion ι : Gu → Diff0(Mg#CP 2) lifts
to a map ι̃ : Gu → D1

g . Now take the limit to get G∞ → D1
g .
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