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Abstract. In this note, we study the moduli space of polygons in R3 and their
relatives. The observation in [19] says that if there is a circle action in the complement
of a Lagrangian sphere, then the square Dehn twist is isotopic to identity. We use
a projective twists version of this observation to provide several families of such
examples in polygon spaces, and related Gelfand-Celtin systems.
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1. Introduction

The symplectomorphism group Symp(M,ω) of a symplectic manifold (M,ω) consists
of all symplectomorphisms, which are diffeomorphisms between the manifold and itself
that preserve the symplectic structure.

The question of whether a given symplectomorphism is isotopic to the identity sym-
plectomorphism is indeed a specific instance of the symplectic isotopy problem. In this
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case, the problem is to determine whether there exists a smooth path of symplectomor-
phisms connecting the given symplectomorphism to the identity symplectomorphism.
Motivated by this problem, exotic symplectomorphism generalizing Dehn twists are
discovered.

In diemnsion 4, significant progress has been made However, in higher dimension, it is
still mysterious and the symplectic isotopy problem stands as a fundamental challenge.
To tackle this challenge and exclude exotic symplectomorphisms, noteworthy progress
was made in [13] with the following result:

Theorem 1.1. For any symplectic toric manifold (M4, ω), if a symplectomorphism
f ∈ Symp(M,ω) acts trivially on the second homology group H2(M

4,Z), then it is
symplectically isotopic to the identity.

This theorem paves the way for an intriguing conjecture that looms large in the
field:

Conjecture 1.2. In dimensions 2k > 4, we conjecture that any toric manifold M2k

possesses a connected subgroup Symph(M,ω) of the symplectomorphism group, where
Symph(M,ω) refers to the subgroup that acts trivially on homology.

The complexity of this conjecture is evident, as it remains a formidable challenge to
prove in higher dimensions. Even in the case of 2k = 6, our knowledge is limited.
To make progress, we embark on a journey of exploration, starting with accessible
examples in higher dimensions, specifically focusing on the moduli spaces of spatial
polygons as symplectic manifolds.

1.1. Moduli space of spatial polygons. A polygon in R3 is determined by its
vertices v1, . . . , vn and its oriented edges e1, . . . , en. For any vector r = (r1, . . . , rn) ∈
Rn

+, Mr will denote the space of polygons with edge lengths r1, . . . , rn modulo rotations
and translations. We consider the moduli space of those objects:

Definition 1.3. Let r = (r1, · · · , rn) be an n-tuple of positive numbers. Consider
spheres Sri → R3, each of radius ri. Define the addition map µ : Sr1 × · · · × Srn → R3

as µ(e1, · · · , en) = e1 + · · ·+ en. The pre-image µ−1(0) is invariant under the diagonal
action of SO(3). The quotient M(r, n) = µ−1(0)/SO(3) forms a manifold of dimension
2n− 6.

These manifolds, denoted as M(r, n) or M(r), are known as the moduli spaces of
spatial polygons, or polygons in three-space R3. Each point of M(r) is a polygons,
represented as edge vectors (e1, · · · , en) ∈ ΠSri , situated in three-space, allowing for
orientation-preserving rigid motions of R3. It’s worth noting that these polygons may
intersect themselves. In [11], reveals the existence of natural symplectic structures,
bending flows, torus actions, and circle actions on M(r), induced from Sr1 × · · · × Srn .
Different weight r = (r1, · · · , rn)may give different topology of M(r). Also, notice that
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the rescaling of the vector r = (r1, · · · , rn) preserves the topology and gives rise to a
rescaling of the symplectic structure.

Further, in [8], the topology of these polygons, including their rational homology ring, is
comprehensively explored. The space ofM(r, n) is a polyhedron and there is a chamber
structure where the topology only change when crossing the wall. In terms of birational
geometry, those spaces M(r, n) are CP n−3 blowup at points or linear subspaces. The
generic M(r, n) is also related to the canonically compactified Deligne-Mumford space
of stable n-pointed projective lines M0,n, where the explicit birational map is given by
[9]. We will detail their topology in section 2.

1.2. Isotopy Results on Projective twists. We unveil several results that shed
light on the intricacies of the symplectic isotopy problem in dimension 6.

As a first step, we consider the moduli space of plane polygons, and they are natural
Lagrangian submanifolds in M(r). The topology of those submanifolds can vary, but in
certain special cases, they are projective spaces (RPn,CPn,HP n for example), where
we can define Dehn twist-like mappings, called projective twists (see Definition 4.2
for more details) along those Lagrangian submanifolds. When there are natural circle
action on the complement of the Lagrangian, we have

Proposition 1.4. Let L ⊂ M be a projective Lagrangian, if there is a circle action on
M \ L, then the square projective twists along Lagrangian submanifold L is symplecti-
cally isotopic to identity in M .

Let (⃗r) ∈ R+
m be a generic vector (1, · · · 1, x), x ∈ (⌊m−1

2
⌋ − 1,m− 1), and M(r⃗, m) be

the corresponding polygon spaces. We are able to prove that

Theorem 1.5. The square of certain projective twists along Lagrangian RP n and CP n

in the above family of M(r,m) are isotopic to identity.

We give two families of polygon space, and Lagrangian RP n or CP n in those manifolds
as explicit examples. However, a complete list is not availabel at this moment. Mean-
while, we find there are examples related to Gelfand-Cetlin systems where Propsition
1.4 applies, see section 4.2 for more details.

The above corollary can be regarded as a generalization of Theorems on Seidel’s remark
of Dehn twist along Lagrangian spheres of small rational manifolds to higher dimen-
sions. Notice that Seidel’s remark states that Dehn twists along certain S2 = CP 1’s
are isotopic to identity in CP 2#kCP 2, k ≤ 4. However, there is another difficulty
(Donaldson’s generation question) toward Conjecture 4.1, which is whether the full
symplectic Torelli group π0(Symph(M,ω)) is generated by Lagrangian Dehn twists.
At this point, only in dimension 4, the question has an affirmative answer for positive
rational surfaces by [13] and in higher dimensions, very little is known.

These examples demonstrate the diversity and complexity of the symplectic world,
offering tantalizing challenges for future research.
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2. Topology and torus actions of polygon spaces

M(r) is non-empty if and only if all permutations of the inequality r1 ⩽ r2 + · · · + rn
hold. Thus, the space of valid r is a polyhedron in Rn. Since there are n-inequalities,
the polyhedron is actually a cone on a simplex. For example, if we choose to normalize
so Σri is a constant, then the region of ri is a simplex. We will often refer to ei for the
corresponding edges.

This simplex is cut by a number of hyperplanes corresponding to the r not satisfying
our standing assumption. These hyperplanes cut the region of valid r into sub-regions
called chambers. Moreover, the bending flow in [11] shows that there is Hamiltonian
torus action on the polygon space for a generic weight vector r, which we will detail in
the section

The topology of M(r) is constant in each chamber. One nice way to see this is that
the corresponding moduli of points are isomorphic. One can just change the weights
from one r to another r0 in the same chamber, and this will never result in a point
with total weight 1

2
or more. Indeed, one can linearly or smoothly interpolate between

r and r0. If the weights at some point reached 1
2
at a point, this would prove that this

intermediate value of r0 did not lie in the same chamber.

Depending on the weight we have a computation of the rational homology ring in
[8]. Here we detail how the chambers are determined, using the inequalities of short
subsets.

Let r = (r1, . . . , rm) ∈ Rm
+ . A subset J ⊂ {1, · · · ,m} is considered ”short” if the sum

of its components is less than or equal to the sum of the components not in J . In other
words, J is short if and only if the sum

∑m
j=1(−1)χJ (i)rj is greater than or equal to

zero, where χS is the characteristic function of set S. For instance, the empty set is
short, and singletons are short if and only if M(r) ̸= ∅. More generally, a set S is short
if and only if there exist configurations in M(r) where all edges in S are parallel. It’s
important to note that these equalities cannot hold if r is assumed to be generic. We
define the set S := S(r) := {J ⊂ {1, . . . ,m}

∣∣ J is short}.

Let r ∈ Rm
+ , and let S := S(r). For k ∈ {1, 2, . . . ,m}, we introduce the subposet Sk of

S as Sk = Sk(r) := {J ⊂ {1, . . . ,m}− {k}
∣∣ J ∪ {k} ∈ S}. In the subsequent sections,

we provide the Poincaré polynomial and presentations of the cohomology ring of M(r)
in terms of Sm. Further, the diffeomorphism type of M(r) is determined by any of the
subposets Sk.

Let PX be the Poincaré polynomial of a manifold X.



CIRCLE ACTIONS AND ISOTOPY ON SPACE OF POLYGONS 5

Proposition 2.1. The various polygon spaces are even-cohomology spaces, and their
Poincaré polynomials are given by

PM(r) =
1

1− t2

∑
J∈Sm

(t2|J | − t2(m−|J |−2))

Those spaces M(r) are all irrational to CPm−3, by [10]. Moreover, their topology up to
diffeomorphism is completely determined by their integral homology, see [4, Theorem
3].

2.1. Bending flow and torus actions. Kapovich and Millson [11] proved that any
triangulation of the standard n-gon yields a Hamiltonian action of T n−3 on M(r⃗, r)
where the angle θi acts by folding the polygon around the ith diagonal of the triangula-
tion (called a bending flow in symplectic geometry and a polygonal fold or crankshaft
move in random polygons). The induced moment map µ : M(r⃗, n) → Rn−3 records the
lengths li of the diagonals in the triangulation.

Here we give more detail, and recall that a polygon is degenerate when it lies on
a line. The moduli space M(r) forms a smooth manifold if and only if the lengths
vector r satisfies a genericity condition, meaning for each I ⊂ 1, . . . , n, the quantity
∆I(r) :=

∑
i∈I ri −

∑
i∈Ic ri is nonzero.

Take a generic r ∈ Rm
+ . For any polygon P inM(r) having edges e⃗1, . . . , e⃗m and vertices

v1, . . . , vm, we can define a system of m − 3 non-intersecting diagonals d⃗1, . . . , d⃗n−3

starting from the first vertex to the other non-adjacent vertices, so d⃗i(P ) = e⃗1 + · · ·+
e⃗i+1.

The lengths of these n − 3 diagonals (l1, . . . , ln−3) : M(r) → Rn−3 mapping

P 7→ (|d⃗1(P )|, . . . , |d⃗n−3(P )|) give continuous functions on M(r) that are smooth
where nonzero. Their image forms a convex polytope ∆ ⊂ Rn−3, containing points
(l1, . . . , ln−3) satisfying triangle inequalities:

ri+2 ⩽ li + li+1

li ⩽ ri+2 + li+1

li+1 ⩽ ri+2 + li

for i = 0, . . . , n− 3, where l0 = r1 and ln−2 = rn.

These li functions generate Hamiltonian flows called bending flows. For a given diagonal

d⃗i, the associated circle action on the dense open set li ̸= 0 ⊂ M(r) bends the first i+1

edges along d⃗i at constant speed while the rest are fixed. Combining the actions from
the (n− 3) diagonals yields a toric T n−3 action on {li ̸= 0, i = 1, · · · , n− 3} ⊂ M(r),
and the symplectic form is given by Σidθi ∧ d(li).
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Moreover, this chamber structure and torus action is related to the GIT quotient
Gr(2, n)//Un(1), where referred to the symplectic version of Gelfand-MacPherson cor-
respondence. When the weight vector crosses a wall given by a degenerated polygon,
the topology and symplectic structure changes follows the way of variation of GIT.
This is described in [15] using the work of Guillemin–Sternberg [7].

Here we recall Theorem 4.1 of [15]

Theorem 2.2. Given two weight vectors in different chambers, r⃗0 ∈ C0 and r⃗1 ∈ C1
separated by the wall ∆Ip(r) :=

∑
Ip
ri −

∑
Iq
ri = 0, where Iq = I \ Ip. Let MIp(r⃗) be

themoduli space of polygons obtained by letting all ei’s proportional to each other for
i ∈ Ip. The topology of the moduli space of polygons M(r⃗) are related by blowing up
MIcp(r0) ≃ CPp−2 and blowing down the projectivization of normal bundle of MIp(r1) ≃
CPq−2.

Moreover, we remark that

Remark 2.3. The blowups and blowdowns from CP n can be done S1-equivariantly (cf.
[7]), where the circle action is the diagonal action of the torus acting on CP n. Notice
that in there is a birational geometry description for (projective) toric varieties using
GIT cf. [17].

2.2. Explicit examples. We focus some families with long rn, compute the cohomol-
ogy of M(r), and hence determine their diffeomorphism types.

First, let’s consider the simplest cases:

Example 2.4 (=Example 10.1 in [8]). Suppose Sm(r) = {∅}, for instance, when
r = (1, . . . , 1,m − 2 − ϵ). Indeed a generic r = (1, . . . , 1, k) with k ∈ (m − 3,m − 1]
works the same. As Sm(r) = {∅}, the expression of the Poincaré polynomial PM(r)

given in Theorem 2.1 reduces to a single term:

PM(r) =
1− t2(m−2)

1− t2
= 1 + t2 + · · ·+ t2(m−3)

which matches the Poincaré polynomial of CPm−3. It follows that M(r) is diffeomor-
phic to the complex projective space CPm−3 in this case.

Another simple example is

Example 2.5 (=Example 10.2 of [8]). Let’s consider a generic r = (ϵ, . . . , ϵ, 1, 1, 1)
with (m− 3)ϵ < 1 ( or after rescaling, for example, r = (1, . . . , 1,m− 2,m− 2,m− 2)
). Then the Poincaré polynomial is given by

PM(r) =
m−3∏
i=1

(1 + t2).

Therefore, M(r) in this case is symplectomorphic to
∏m−3

i=1 S2
ri
.
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Next, we have the blowup of CPN at a certain number of points. Notice that If X is of
dimension n and BpX the blow-up at a point p ∈ X then PBpX(t) = PX(t)+ t2+ · · ·+
t2n−2. More generally, blowing-up along a linear subspace P k add t2k+2+ · · ·+ t2n−2−2k

to the Poincaré polynomial.

Example 2.6. We note that the initial case mentioned, rm = (1, 1, · · · , 1,m − 3).
There is one short set ∅, m − 1 of short sets being {1}, and no other short sets. The
Poincaré polynomial is given by

PM(r) =
1− t2(m−2)

1− t2
= 1 + t2 + · · ·+ t2(m−3) + (m− 1)(1 + t2 + · · ·+ t2(m−4)).

This leads to M(r) being a smooth manifold diffeomorphic to CPm−3♯(m− 1)CPm−3,
a blowup of CPm−3 at m− 1 points in general position.

A special case worth mentioning is the regular pentagon: r = (1, 1, 1, 1, 1). In this

scenario, M(r) is a smooth manifold diffeomorphic to (S2 × S2)♯3CP 2 ≃ CP 2♯4CP 2
.

Notice that there are other chambers where the topology of M(r) are blowups of CPN

at linear subspaces, instead of points. Moreover, the Euler number of the blowup
could be larger than the one given in Example 2.6. However, we highlight this example
because of the following connection to the Gelfand-MacPherson correspondence.

Remark 2.7. We have the following equivalence of GIT quotients called Gelfand-
MacPherson correspondence:

(P d−1)n�PGLd(C) ∼= Gr(d, n)�TU(n)
∼= Gr(n−d, n)�TU(n)

∼= (P n−d−1)n�PGLn−d(C).

When n = d+ 2, we have the following Conf(CP n, n+ 3) ≃ Conf(CP 1, n+ 3).

Notice that when k < n + 3, Conf(CP n, n + 3) is trivial, because PGLn+1(C) acts
(n+ 2) transitively on CP n. Hence (n+ 2) blowup at CP n is a critical value, which is
analogous to Seidel’s observation in Example 2.13 of [19].

One observation (cf. Section 3 of [11]) is that there is a bending flow that makes M(r)
almost toric. A blowup of CP n at a small number of points in general position often
admits a torus action. Note that adjusting the weight, one can obtain blowup at CP n

at less than (n + 2) points. This means that polygon spaces provide a large class of
examples for Conjecture 1.2.

Example 2.8. Now let m be 2n + 1, and a generic rm = (1, 1, · · · , 1, N + ϵ), where
N ∈ [n,m− 2). There is one short set ∅, m− 1 of short sets being {1}, and Cj

m−1 of
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short sets J with j = |J | ≤ n. No other short sets exists. The Poincaré polynomial is
given by

PM(r) =
m−N∑
i=0

(
m− 1

i

)
1− t2(m−2i−2)

1− t2
.

Note that this is a blowup of CP (n− 3) at points and linear subspaces.

Note that for m even, this also works. For a general m, a generic vector rm =
(1, 1, · · · , 1, ⌊m−1

2
⌋ − 1 + ϵ) gives the above manifolds and the counterpart for m even.

We note that unlike the real dimension 4 case, where one have both CP 2 and CP 1×CP 1

as the minimal model, this is no longer true in real dimension 6 or higher. Let Br(P
1)n

be the blow-up of (P 1)n at r points, and BsP
n the blow-up of P n at s points, then

equality of Poincaré polynomial implies that

(1 + t2)n + r(t2 + · · ·+ t2n−2) = 1 + t2 + · · ·+ t2n + s(t2 + · · ·+ t2n−2)

=⇒ r + n− 1 = s+ 1

and r +

(
n

2

)
= s+ 1

and we easily see that this system that has no solutions if n ⩾ 3.

However, we do have the following family that realizes as blowup of CP k × CP k at
points and linear subspaces:

Example 2.9. Notice that the Poincaré polynomial of CP k×CP k is (1+t2+· · ·+t2k)2,
and multiply this by 1− t2 we get 1 + t2 + · · · + t2k − t2k+2 − · · · − t4k−2 = (1 −
t4k+2) + t2 − t4k−4) + · · · + (t2k+2 − t2k). Hence m = 2k + 3, or k = n − 1, we have

PM(r) = PCPn×CPn +
∑m−N

i=1 [
(
m−1
i

)
− 1]1−t2(m−2i−2)

1−t2
.

Note that for all N ∈ [n,m−3], [
(
m−1
i

)
−1] is positive. Then M(r) is a smooth manifold

diffeomorphic to CP k × CP k blowup at linear subspaces of various dimension.

3. Dehn twists and circle actions in dimension 4

This section follows [19], and we recall the construction of Dehn twist along Lagrangian
spheres and the isotopy results in dimension 4.

Note in the case of dimension 2, the moduli spaces M(r, 4) are all homeomorphic to
S2 = CP 1.

Moving to dimension 4,M(r, 5) exhibits diverse topological possibilities, including CP 2,

S2 × S2, and CP 2#nCP 2, where n ⩽ 4. The symplectic structures on these manifolds
are heavily influenced by their sizes, a topic we will delve into further in our discussion.
It’s noteworthy that all of these manifolds admit Hamiltonian torus actions. However,
this is not the case when we venture into dimensions 6 and beyond.
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In this section, we will explore various isotopy problems in these spaces, many of which
have been addressed in [19] in dimension 4. These problems serve as valuable models
for understanding results in higher dimensions. We will also draw comparisons between
these results and the corresponding cases involving domains later.

Let’s begin by briefly revisiting the definition of Dehn twists along Lagrangian
spheres.

The construction of four-dimensional Dehn twists is a standard procedure, as described
in [1, 20]. We will delve into the details, as they serve as the foundation for our
subsequent discussions. Consider the symplectic manifold T ∗S2 equipped with its
standard symplectic form ω. In coordinates, we have:

T ∗S2 = {(p, q) ∈ R3 × R3 | ⟨p, q⟩ = 0, ||q|| = 1}, ω = dp ∧ dq.

This manifold comes equipped with an O(3)-action induced from the action on S2.
Perhaps less intuitively, the function h(p, q) = ||p|| induces a Hamiltonian circle action
σ on the complement of S2 in T ∗S2, defined as follows:

σt(p, q) =

(
cos(t)p− sin(t)||p||q, cos(t)q + sin(t)

p

||p||

)
.

For π-rotation, σπ corresponds to the antipodal map A(p, q) = (−p,−q). However, for
t ∈ (0; π), σt does not extend continuously over the zero-section. Geometrically, with
respect to the round metric on S2, σ can be thought of as the ”normalized geodesic
flow,” which transports each tangent vector at unit speed along the geodesic originating
from it. This existence is based on the remarkable property that all geodesics on S2

are closed, with precisely the same period.

This construction extends seamlessly to Lagrangian rank one symmetric spaces, as
their normalized geodesic flow is periodic with a period of 2π.

Now, let’s introduce a function r : R → R satisfying r(t) = 0 for t ≫ 0 and r(−t) =
r(t)− t. The Hamiltonian flow generated by H = r(h) can be expressed as ϕt(p, q) =
σt r′(||p||)(p, q). Given that r′(0) = 1/2, the time-2π map can be smoothly extended
over the zero-section as the antipodal map. This gives rise to a compactly supported
symplectic automorphism of T ∗S2, denoted as:

τ(p, q) =

{
σ2π r′(||p||)(p, q) p ̸= 0,

(0,−q) p = 0

This symplectic automorphism is commonly referred to as a ”model Dehn twist.” To
apply this local model in a specific geometric context, consider a Lagrangian sphere
L ⊂ M within a closed symplectic four-manifold. Choose an identification i0 : S2 →
L. By virtue of the Weinstein neighborhood theorem, i0 extends to a symplectic
embedding:
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i : T ∗
⩽λS

2 −→ M

Here, T ∗
⩽λS

2 ⊂ T ∗S2 comprises cotangent vectors of length ⩽ λ, where λ > 0 is a small
parameter. With a suitable choice of r(t) such that r(t) = 0 for t ⩾ λ/2, we obtain a
model Dehn twist τ supported within this subspace. Subsequently, we define the Dehn
twist τL as follows:

τL(x) =

{
iτ i−1(x) x ∈ im(i),

x otherwise.

It’s worth noting that while the construction is not strictly unique, it is unique up to
symplectic isotopy.

As we proceed, following [19], we will refer to a symplectomorphism as ”fragile” if it
is smoothly isotopic to the identity but not symplectically isotopic. Similarly, we will
denote a diffeomorphism as ”potentially fragile” if we can find a compatible symplectic
form on the ambient manifold such that the upgraded symplectomorphism becomes
fragile. Note that locally τS2 is fragile in T ∗S2, and τS2 is potentially fragile in a closed
4-manifold M .

Recalling an insight from [19], we can seamlessly integrate this local construction into
any Dehn twist, leading to the following corollary:

Corollary 3.1. For any Lagrangian sphere L residing within a closed symplectic four-
manifold M , it turns out that the square τ 2L of the Dehn twist is potentially fragile. □

Now, let’s delve into an elementary construction directly based on the circle action σ
employed in defining the Dehn twist.

Lemma 3.2. Suppose that there exists a Hamiltonian circle action σ̄ on M \ L and a
Weinstein neighborhood i : T ∗

<λS
2 → M of L that preserves equivariance with respect

to σ and σ̄. In this scenario, it follows that τ 2L is isotopic to the identity within
Symp(M). □

3.1. The Family of M(r, 5): Two Extreme Cases. M(r, 5) emerges as the result
of the diagonal action of SO(3) on (S2)5, with a moment map defined as µ(x) =
−(e1 + · · · + e5). The topology could be any rational surface with Euler number at
most 7. Two interesting cases of M(r, 5) come into focus, offering extreme chambers
as we vary the weights:

Example 3.3. Consider M = S2 × S2 equipped with a monotone symplectic form,
and let L = {e1 + e2 = 0} represent the antidiagonal. The diagonal SO(3)-action
with the moment map µ(e) = −e1 − e2 ∈ R3, and from the bending flow we know that
h̄(e) = ||e1+e2|| is the moment map for a circle action σ̄ on M \L. This has the desired
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property with respect to any SO(3)-equivariant Lagrangian tubular neighborhood for L.
Lemma 3.2 shows that τ 2L is isotopic to id, recovering Gromov’s Theorem [6].

Indeed τL is symplectically isotopic to the involution (e1, e2) 7→ (e2, e1). Notice that
quotient this involution we get the Example 4.10.

Example 3.4. Let’s take M ∼= CP 2#4CP 2, as established in Example 2.5 of [19],
where M is known to be monotone.

Define Li = {ei+ei+1 = 0}, and we observe that M\(Li) carries a S1-action. mirroring
the construction in the previous example. Again, the bending flow gives a circle action
by rotating e1 around the axis formed by e1 + e2 while leaving e1 + e2, e3, e4, e5 fixed.
The relevant moment map is h1(e) = ||e1+e2||, and this is a circle action on T ∗L1 \L1

leaving L1 fixed.

Much like the previous example, the squar square Dehn twist along each of the La-
grangian spheres Li turns out to be isotopic to identity.

In conclusion, by varying this example and considering quintuples of vectors with
different lengths (as detailed in [8, 5]), we can generate instances of Lagrangian spheres

on CP 2#2CP 2 and CP 2#3CP 2. In these cases, τ 2 is symplectically isotopic to the
identity.

4. Projective twists in polygon spaces and related Gelfand-Celtin
ssytems

Now we consider higher dimensional local symplectomrophisms that naturally general-
ize Dehn twists. This is a first attempt toward a special case of Conjecture 1.2:

Conjecture 4.1. If (M(r, n), ω) admits a Hamiltonian torus action, then Symph(M(r, n), ω)
is connected.

4.1. Projective Twists. In the context of a closed Riemannian manifold (L, g)
with the property H1(L;R) = 0 and equipped with a periodic (co-)geodesic flow
denoted as Φt

L : T
∗L → T ∗L, Seidel ([18]) introduces a class of symplectomorphisms in

Sympc(T
∗L). We will provide an overview of the construction, using the notation from

[14], for this class of symplectomorphisms, which we refer to as ”twists.” Specifically,
when L ∼= S2n+1, this corresponds to the well-known symplectic ”Dehn twist,” and for
cases where L falls within {RPn,CPn,HPn}, this construction results in what we term
a ”projective twist.”

For L ∼= Sn and given δ > 0, we define an auxiliary function rδ ∈ C∞([0, 1],R) such
that 0 < rδ(t) < π for all t < δ, with the following behavior:

rδ(t) =

{
1
2
− t if t ≪ δ

0 if t ⩾ δ



12 DANIEL BURNS AND JUN LI

If L is a (real, complex, or quaternionic) projective space and δ > 0, we let rδ ∈
C∞([0, 1],R) satisfy 0 < rδ(t) < 2π for all t < δ, with the following behavior:

rδ(t) =

{
1− t if t ≪ δ
0 if t ⩾ δ

Here, ∥·∥L denotes the norm associated with the given Riemannian metric g. Consider
the unit disc bundle T ∗

<1L, where T ∗
<sL := {v ∈ T ∗L; ∥v∥L ⩽ s}, equipped with the

standard symplectic form ω ∈ Ω2(T ∗
<1L) and the contact form λ ∈ Ω1(ST ∗L), with

ST ∗L being the unit cotangent bundle.

The normalized co-geodesic flow Φt
L, which coincides with the Reeb flow for λ, satisfies

Φ1
L = Id and can be extended to a Hamiltonian S1-action denoted as σt on D1T

∗L \L,
with the moment map µ : T ∗

<1L → R defined as µ(v) = ∥v∥L.

Definition of Projective Twists

Parallel to the local twist along S2, we define the model projective twist τ locL : T ∗
<1L →

T ∗
<1L as follows:

Definition 4.2. For L isomorphic to a projective space, we define:

τ locL (p) =

{
σr(∥p∥L)(p) if p /∈ L
p if p ∈ L.

This summarizes the construction of these symplectomorphisms, which we term
”twists,” depending on the nature of the underlying manifold L.

Notice that the identification S2 ∼= CP 1 induce identification τ 2S2 ≃ τCP 1 .

Now suppose L ⊂ M is a Lagrangian embedding of a Riemannian manifold L as
above into a symplectic manifold (M,ω). By the Weinstein neighbourhood theorem, a
neighbourhood of L ⊂ M can be identified with a neighbourhood of L ⊂ T ∗L, a disc
bundle D⩽sT

∗L.

Definition 4.3. Let L ⊂ M be a exact Lagrangian submanifold embedded in M and
τ locL a model twist supported in the interior of D∗

⩽sL. Consider the symplectomorphism
defined as

τL ∼=
{

ι ◦ τ locL ◦ ι−1 on Im(ι)
Id elsewhere

In the case where L is a sphere, the map τL is the standard symplectic Dehn twist.
When L is a projective space, the resulting map is called projective twist. In this
paper, the appellation Dehn is exclusively reserved for twists that are constructed from
a Lagrangian sphere.
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Remark 4.4. We refer to [18, Section 4.b] for the choices involved in this construction
(in particular the auxiliary functions rϵ). Also, note that [18] proved that

• Given a symplectic manifold (M,ω), any Lagrangian L ∼= CPn ⊂ M , the
projective twist τL is smoothly trivial, i.e. it is isotopic to the identity in
Diffc(M).

• Let L be a simply connected projective manifold,then the local projective twist
τ locL is fragile, moreover, it has infinite order in π0(Sympc(T

∗L)).

Proposition 4.5 (=Proposition 1.5). Let L be a projective Lagrangain. Suppose that
there exists a Hamiltonian circle action σ̄ on M \ L and a Weinstein neighborhood
i : T ∗

<λL → M of L that preserves equivariance with respect to σ and σ̄. Then τ 2L is
isotopic to the identity within Symp(M). □

Proof. This is a straight forward argument by the constructions of projective twists.

Let’s assume the Lagrangian L is projective and its complement has a circle action.

Now let’s take the unit disk bundle T ∗
≤1L. By the construction of projective twists τL,

there is a family of smooth maps ft such that f0 = id and f1 = τL. Now we will take
the circle action of M \ T ∗

≤1L, and use a radio Hamiltonian function to cut-off. The
upshot is on the set T ∗

=1L, the circle action is the one induced from M \ T ∗
≤1L; while

on each level T ∗
a,a<1L, the cut-off untwists the action τL.

□

Example 4.6. Recall Example 2.4, the symplectic manifold is CPn with the Fubuny-
Study form ω. Let RP n be the moduli space of planer polygons. It is is a Lagrangian,
and indeed the real part of CP n. The complement has a circle action fixing the RPn:
by the Biran decomposition cf. [2], the complement of real RPn ⊂ CPn is a disk
bundle over the degree 4 hypersurface and the circle action is the diagonal action of
the toric CPn. Then the square projective Dehn twist τ 2RPn is isotopic to identity in
Symp(CPn, ω).

Example 4.7. Recall Example 2.6 and 2.8, the symplectic manifold is a blowup of
CPn with the Fubini-Study form ω at linear subspaces.. The Lagrangian RPN in CP n

is still there, by the bending flow in [11] or Theorem 2.2, there is a circle action in
the complement. Another point of view is that such a blowup is given by equivariant
blowup with sizes smaller than the disk fiber of the Biran decomposition. Hence the
RPn is not affected by the blowup.

Example 4.8. Recall Example 2.9, when m = 2n + 3, the symplectic manifolds can
be realized as blowups of CPn ×CPn with the Fubini-Study form ω at linear subspaces.
The Lagrangian CP n in CP n×CP n persists under the blowup and by or Theorem 2.2,
there is a circle action in the complement. Hence the square projective twist is isotopic
to identity in Symp(M(r), ω), by Proposition 1.4.
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Another point of view is that such a blowup is given by equivariant blowup with sizes
smaller than the disk fiber of the Biran decomposition. Hence the RPn is not affected
by the blowup.

Remark 4.9. The above examples are not a complete listfor polygon spaces with projec-
tive Lagrangians. It does not cover the non generic weight vector cases, which could be
toric degenerations( cf. [16]). It is possible to give a general pattern using Proposition
4.5 with a more careful analysis of the integrable systm

Note that there is a volume formula (and computation of Chern classes) for the sym-
plectic form constructed by the bending flow. However, an explicit descripsion of co-
homology classes is still missing. We hope to explore both aspects in a future work
??.

4.2. Examples related to Gelfand-Celtin systems. Note that M(r, n) are ratio-
nal varieties, which are naturally related to Grassmannians by the symplectic Gelfand-
MacPherson correspondence in [8]. They are both important examples of Fano vari-
eties and support integrable systems with generic fibers being torus and non-torus La-
grangian fibers. In spirit of Strominger-Yau-Zaslow and homological mirror symmetry,
non-torus Lagrangian fibers is responsible for the incompleteness of the Givental-Hori-
Vafa mirror cf. [NNU10]. in order to study closed mirror symmetry

Example 4.10. A Lagrangain RP 2 ⊂ CP 2.

Notice that in this figure, the top circle is
RP 2, and the triangle is moment polytope
(cf. [12]) of CP 2 \RP 2. Note that the com-
plement is a rational curve of degree 2 in
CP 2. There is a circle action in this com-
plement by extending the circle actions on
each edges. Notice that this is used in [3].

Note that this picture continue to hold for CPn, where n ≥ 3. A related picture is the
following: Let Qn := {z20 = z21 + · · ·+ z2n} ⊂ CP n. The real part of Qn is a Lagrangian
Sn.

Example 4.11. A Lagrangian S3 ⊂ F (1, 2, 3).
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This is the Gelfand-Cetlin polytope of the
full flag manifold F (1, 2, 3). There is only
one non-Delzant point, which is the vertex
with 4 edges. At this point one has a La-
grangian S3 (it comes from S3 ≃ SU(2).)
In the complement there is a circle action,
again by extending the circle actions on the
edges. Notice that the Floer homology and
disk potential of this fiber is computed in
[16].

In general, the Gelfand-Celtin fiber may not be a projective Lagrangian. For example,
the next flag manifold Gr(2, 4) has a Lagrangian U(2) which does not all geodesics
closed. However, there is a correspondence between the integrable system of Grass-
mannian and the bending flow system on the space of polygons. We end this section
with the following question: when does a Gelfand-Celtin have special Lagrangian fiber
being a projective Lagrangian?
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